Abstract

This article introduces a pendulum element to a 3-spring vibration isolator to achieve a high-static-low-dynamic (HSLD) stiffness or even quasi-zero stiffness (QZS) around the equilibrium position. The model is first established, the equilibrium point is derived and the optimal stiffness ratio of this novel system at the equilibrium position is also obtained. Numerical simulation is given and the harmonic balance method (HBM) is used to obtain time responses for analysis. Effects of different parameters on the isolation performance are studied and summarized. Approximation force and displacement transmissibility of the system are calculated to evaluate the isolation performance. Comparisons are made with those of an equivalent linear isolator and the typical 1 degree-of-freedom (DOF) QZS isolator. Results show that the novel vibration isolator performs better than existing isolators under selected parameters. The left bent backbone of the novel isolator demonstrates evident softening geometric nonlinearity. Therefore, it achieves a wider frequency range of isolation than the linear 1DOF isolator and typical 3-spring QZS isolator. Moreover, the transmissibility of the novel isolator is smaller at higher frequencies as the jump phenomenon occurs on the left.

References

1.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Harris' Shock and Vibration Handbook
,
McGraw-Hill
,
New York
.
2.
Zuppa
,
L. A.
,
Awrejcewicz
,
J.
,
Losyeva
,
N.
,
Puzyrov
,
V.
, and
Savchenko
,
N.
,
2020
, “
Energy Harvesting for System of Coupled Oscillators Under External Excitation in the Vicinity of Resonance 1: 1
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
12
), p.
121005
.10.1115/1.4047555
3.
Rivin
,
E. I.
,
1995
, “
Vibration Isolation of Precision Equipment
,”
Precis. Eng.
,
17
(
1
), pp.
41
56
.10.1016/0141-6359(94)00006-L
4.
Liu
,
C.
,
Jing
,
X.
,
Daley
,
S.
, and
Li
,
F.
,
2015
, “
Recent Advances in Micro-Vibration Isolation
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
55
80
.10.1016/j.ymssp.2014.10.007
5.
Ibrahim
,
R.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
6.
Balaji
,
P.
, and
SelvaKumar
,
K. K.
,
2021
, “
Applications of Nonlinearity in Passive Vibration Control: A Review
,”
J. Vib. Eng. Technol.
,
9
(
2
), pp.
183
213
.10.1007/s42417-020-00216-3
7.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2019
, “
Passive Isolation by Nonlinear Boundaries for Flexible Structures
,”
ASME J. Vib. Acoust.
,
141
(
5
), p. 051003.10.1115/1.4042932
8.
Cheng
,
C.
,
Li
,
S.
,
Wang
,
Y.
, and
Jiang
,
X.
,
2017
, “
Force and Displacement Transmissibility of a Quasi-Zero Stiffness Vibration Isolator With Geometric Nonlinear Damping
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2267
2279
.10.1007/s11071-016-3188-0
9.
Alabuzhev
,
P.
,
1989
,
Vibration Protection and Measuring Systems With Quasi-Zero Stiffness
,
CRC Press
, New York.
10.
Carrella
,
A.
,
Brennan
,
M.
, and
Waters
,
T.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.10.1016/j.jsv.2006.10.011
11.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.10.1016/j.ijmecsci.2011.11.012
12.
Cao
,
Q.
,
Wiercigroch
,
M.
,
Pavlovskaia
,
E. E.
,
Grebogi
,
C.
, and
Thompson
,
J. M. T.
,
2006
, “
Archetypal Oscillator for Smooth and Discontinuous Dynamics
,”
Phys. Rev. E
,
74
(
4
), p.
046218
.10.1103/PhysRevE.74.046218
13.
Cao
,
Q.
,
Wiercigroch
,
M.
,
Pavlovskaia
,
E. E.
,
Grebogi
,
C.
, and
Thompson
,
J. M. T.
,
2008
, “
The Limit Case Response of the Archetypal Oscillator for Smooth and Discontinuous Dynamics
,”
Int. J. Non-Linear Mech.
,
43
(
6
), pp.
462
473
.10.1016/j.ijnonlinmec.2008.01.003
14.
Tian
,
R.
,
Cao
,
Q.
, and
Yang
,
S.
,
2010
, “
The Codimension-Two Bifurcation for the Recent Proposed SD Oscillator
,”
Nonlinear Dyn.
,
59
(
1–2
), pp.
19
27
.10.1007/s11071-009-9517-9
15.
Yang
,
T.
,
Zhou
,
S.
,
Fang
,
S.
,
Qin
,
W.
, and
Inman
,
D. J.
,
2021
, “
Nonlinear Vibration Energy Harvesting and Vibration Suppression Technologies: Designs, Analysis, and Applications
,”
Appl. Phys. Rev.
,
8
(
3
), p.
031317
.10.1063/5.0051432
16.
Yang
,
T.
,
Cao
,
Q.
, and
Hao
,
Z.
,
2021
, “
A Novel Nonlinear Mechanical Oscillator and Its Application in Vibration Isolation and Energy Harvesting
,”
Mech. Syst. Signal Process.
,
155
, p.
107636
.10.1016/j.ymssp.2021.107636
17.
Yang
,
T.
,
Cao
,
Q.
,
Li
,
Q.
, and
Qiu
,
H.
,
2021
, “
A Multi-Directional Multi-Stable Device: Modeling, Experiment Verification and Applications
,”
Mech. Syst. Signal Process.
,
146
, p.
106986
.10.1016/j.ymssp.2020.106986
18.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.10.1016/j.jsv.2011.07.039
19.
Shaw
,
A.
,
Neild
,
S.
,
Wagg
,
D.
,
Weaver
,
P.
, and
Carrella
,
A.
,
2013
, “
A Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation
,”
J. Sound Vib.
,
332
(
24
), pp.
6265
6275
.10.1016/j.jsv.2013.07.016
20.
Sun
,
X.
,
Jing
,
X.
,
Xu
,
J.
, and
Cheng
,
L.
,
2014
, “
Vibration Isolation Via a Scissor-Like Structured Platform
,”
J. Sound Vib.
,
333
(
9
), pp.
2404
2420
.10.1016/j.jsv.2013.12.025
21.
Sun
,
X.
, and
Jing
,
X.
,
2016
, “
Analysis and Design of a Nonlinear Stiffness and Damping System With a Scissor-Like Structure
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
723
742
.10.1016/j.ymssp.2015.05.026
22.
Bian
,
J.
, and
Jing
,
X.
,
2020
, “
Analysis and Design of a Novel and Compact X-Structured Vibration Isolation Mount (X-Mount) With Wider Quasi-Zero-Stiffness Range
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2195
2222
.10.1007/s11071-020-05878-y
23.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051004
.10.1115/1.4036465
24.
Cai
,
C.
,
Zhou
,
J.
,
Wu
,
L.
,
Wang
,
K.
,
Xu
,
D.
, and
Ouyang
,
H.
,
2020
, “
Design and Numerical Validation of Quasi-Zero-Stiffness Metamaterials for Very Low-Frequency Band Gaps
,”
Compos. Struct.
,
236
, p.
111862
.10.1016/j.compstruct.2020.111862
25.
Fan
,
H.
,
Yang
,
L.
,
Tian
,
Y.
, and
Wang
,
Z.
,
2020
, “
Design of Metastructures With Quasi-Zero Dynamic Stiffness for Vibration Isolation
,”
Compos. Struct.
,
243
, p.
112244
.10.1016/j.compstruct.2020.112244
26.
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Six Degrees-of-Freedom Vibration Isolation Platform Supported by a Hexapod of Quasi-Zero-Stiffness Struts
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
034502
.10.1115/1.4035715
27.
Corrêa
,
R. F.
, and
Marques
,
F. D.
,
2021
, “
Influence of Bistable Plunge Stiffness on Nonlinear Airfoil Flutter
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
6
), p.
061004
.10.1115/1.4050792
28.
Dotti
,
F. E.
, and
Virla
,
J. N.
,
2021
, “
Nonlinear Dynamics of the Parametric Pendulum With a View on Wave Energy Harvesting Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
6
), p.
061007
.10.1115/1.4050699
29.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Woo
,
K.-C.
, and
Rodger
,
A. A.
,
2003
, “
Modelling of Ground Moling Dynamics by an Impact Oscillator With a Frictional Slider
,”
Meccanica
,
38
(
1
), pp.
85
97
.10.1023/A:1022023502199
30.
Pavlovskaia
,
E. E.
,
Karpenko
,
E.
, and
Wiercigroch
,
M.
,
2004
, “
Non-Linear Dynamic Interactions of a Jeffcott Rotor With Preloaded Snubber Ring
,”
J. Sound Vib.
,
276
(
1–2
), pp.
361
379
.10.1016/j.jsv.2003.07.033
31.
Slotine
,
J.-J.
, and
Sastry
,
S. S.
,
1983
, “
Tracking Control of Non-Linear Systems Using Sliding Surfaces, With Application to Robot Manipulators
,”
Int. J. Control
,
38
(
2
), pp.
465
492
.10.1080/00207178308933088
32.
Cao
,
Q.
,
Léger
,
A.
, and
Wiercigroch
,
M.
,
2016
,
A Smooth and Discontinuous Oscillator
,
Springer Tracts in Mechanical Engineering
, Berlin.
You do not currently have access to this content.