Abstract

In this paper, multiple order reduction techniques for parametrically excited nonlinear quasi-periodic systems are presented. The linear time-varying part of the quasi-periodic system is transformed into a linear time-invariant form via the Lyapunov–Perron (L–P) transformation. The analytical computation of such a transformation is performed using an intuitive state augmentation and the normal forms technique. This L–P transformation is further utilized in analyzing the nonlinear part of the original quasi-periodic system. Using the L–P transformation, three-order reduction techniques are detailed in this work. First, a Guyan linear reduction method is applied to reduce the order. The second method is to determine a nonlinear projection based on the singular perturbation method. In the third technique, the method of Invariant Manifold is applied to identify a relationship between the dominant and nondominant system states. Furthermore, in this work, all three order reduction techniques are demonstrated on the class of commutative and noncommutative/Hills-type nonlinear quasi-periodic systems. The behavior of the reduced system states of the resulting solution is compared with the numerical integration results and their performance is studied using the error plots for each technique.

References

1.
Rega
,
G.
,
2020
, “
Nonlinear Dynamics in Mechanics and Engineering: 40 Years of Developments and Ali H. Nayfeh's Legacy
,”
Nonlinear Dyn.
,
99
(
1
), pp.
11
34
.10.1007/s11071-019-04833-w
2.
Sharma
,
A.
,
2021
, “
Approximate Lyapunov–Perron Transformations: Computation and Applications to Quasi-Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
5
), p.
051005
.10.1115/1.4050614
3.
Freno
,
B. A.
,
Brenner
,
T. A.
, and
Cizmas
,
P. G.
,
2013
, “
Using Proper Orthogonal Decomposition to Model Off-Reference Flow Conditions
,”
Int. J. Non-Linear Mech.
,
54
, pp.
76
84
.10.1016/j.ijnonlinmec.2013.03.007
4.
Shaw
,
S.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
5.
Haller
,
G.
, and
Ponsioen
,
S.
,
2017
, “
Exact Model Reduction by a Slow–Fast Decomposition of Nonlinear Mechanical Systems
,”
Nonlinear Dyn.
,
90
(
1
), pp.
617
647
.10.1007/s11071-017-3685-9
6.
Kevorkian
,
J.
, and
Cole
,
J.
,
2012
,
Multiple Scale and Singular Perturbation Methods
(Applied Mathematical Sciences),
Springer
,
New York
.
7.
Sinha
,
S.
,
Redkar
,
S.
,
Deshmukh
,
V.
, and
Butcher
,
E. A.
,
2005
, “
Order Reduction of Parametrically Excited Nonlinear Systems: Techniques and Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
237
273
.10.1007/s11071-005-2822-z
8.
Masoudi
,
R.
,
Uchida
,
T.
, and
McPhee
,
J.
,
2015
, “
Reduction of Multibody Dynamic Models in Automotive Systems Using the Proper Orthogonal Decomposition
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p. 031007.10.1115/1.4029390
9.
Jung
,
C.
,
Epureanu
,
B. I.
,
Baik
,
S.
, and
Huffman
,
M. B.
,
2015
, “
Nonlinear Reduced Order Models for the Structural Dynamics of Combustor Systems With Prestress and Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011009
.10.1115/1.4028014
10.
Khalid
,
M. S. U.
,
Rabbani
,
T.
,
Akhtar
,
I.
,
Durrani
,
N.
, and
Salman Siddiqui
,
M.
,
2015
, “
Reduced-Order Modeling of Torque on a Vertical-Axis Wind Turbine at Varying Tip Speed Ratios
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p.
041012
.10.1115/1.4028064
11.
Nayfeh
,
A. H.
,
2008
, “
Order Reduction of Retarded Nonlinear Systems–the Method of Multiple Scales Versus Center-Manifold Reduction
,”
Nonlinear Dyn.
,
51
(
4
), pp.
483
500
.10.1007/s11071-007-9237-y
12.
Rega
,
G.
, and
Troger
,
H.
,
2005
, “
Dimension Reduction of Dynamical Systems: Methods, Models, Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
1
15
.10.1007/s11071-005-2790-3
13.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2005
, “
Reduced-Order Models for Mems Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
211
236
.10.1007/s11071-005-2809-9
14.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
1998
, “
Transition Curves for the Quasi-Periodic Mathieu Equation
,”
SIAM J. Appl. Math.
,
58
(
4
), pp.
1094
1115
.10.1137/S0036139996303877
15.
Sinha
,
S.
,
Butcher
,
E.
, and
Dávid
,
A.
,
1998
, “
Construction of Dynamically Equivalent Time-Invariant Forms for Time-Periodic Systems
,”
Nonlinear Dyn.
,
16
(
3
), pp.
203
221
.10.1023/A:1008072713385
16.
Sinha
,
S.
, and
Pandiyan
,
R.
,
1994
, “
Analysis of Quasilinear Dynamical Systems With Periodic Coefficients Via Liapunov–Floquet Transformation
,”
Int. J. Non-Linear Mech.
,
29
(
5
), pp.
687
702
.10.1016/0020-7462(94)90065-5
17.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquét Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.10.1115/1.4037797
18.
Waswa
,
P. M. B.
, and
Redkar
,
S.
,
2020
, “
Reducibility and Analysis of Linear Quasi-Periodic Systems Via Normal Forms
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p.
091010
.10.1115/1.4046899
19.
Redkar
,
S.
,
2012
, “
Lyapunov Stability of Quasiperiodic Systems
,”
Math. Probl. Eng.
,
2012
, pp.
1
10
.10.1155/2012/721382
20.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
2002
, “
Global Behavior of a Nonlinear Quasiperiodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
1
), pp.
87
105
.10.1023/A:1017931712099
21.
Belhaq
,
M.
, and
Houssni
,
M.
,
1999
, “
Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations
,”
Nonlinear Dyn.
,
18
(
1
), pp.
1
24
.10.1023/A:1008315706651
22.
Guennoun
,
K.
,
Houssni
,
M.
, and
Belhaq
,
M.
,
2002
, “
Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
3
), pp.
211
236
.10.1023/A:1014496917703
23.
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2021
, “
Comparison of Poincare Normal Forms and Floquet Theory for Analysis of Linear Time Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
014502
.10.1115/1.4048715
24.
C Subramanian
,
S.
,
Dye
,
M.
, and
Redkar
,
S.
,
2020
, “
Dynamic Analysis of Suction Stabilized Floating Platforms
,”
J. Mar. Sci. Eng.
,
8
(
8
), p.
587
.10.3390/jmse8080587
25.
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2020
, “
Stability Analysis and Controller Design for Linear Time Periodic Systems Using Normal Forms
,”
ASME
Paper No. DSCC2020-3132.10.1115/DSCC2020-3132
26.
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2021
, “
Lyapunov-Perron Transformation for Quasi-Periodic Systems and Its Applications
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041015
.10.1115/1.4050528
27.
Aburn
,
M.
,
2016
, “
Critical Fluctuations and Coupling of Stochastic Neural Mass Models
,”
Ph.D. thesis
, School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.10.14264/uql.2017.148
28.
Marasco
,
A.
, and
Romano
,
A.
,
2001
,
Scientific Computing With Mathematica®: Mathematical Problems for Ordinary Differential Equations; With a CD-ROM
,
Springer Science & Business Media
, Berlin.
29.
Jorba
,
A.
,
Ramirez-Ros
,
R.
, and
Villanueva
,
J.
,
1997
, “
Effective Reducibility of Quasi-Periodic Linear Equations Close to Constant Coefficients
,”
SIAM J. Math. Anal.
,
28
(
1
), pp.
178
188
.10.1137/S0036141095280967
30.
Redkar
,
S.
,
Sinha
,
S.
, and
Butcher
,
E. A.
,
2003
, “
Some Techniques for Order Reduction of Nonlinear Time Periodic Systems
,”
ASME
Paper No. IMECE2003-42559.10.1115/IMECE2003-42559
31.
Waswa
,
P. M.
,
Redkar
,
S.
, and
Subramanian
,
S. C.
,
2020
, “
A Plain Approach for Center Manifold Reduction of Nonlinear Systems With External Periodic Excitations
,”
J. Vib. Control
,
26
(
11–12
), pp.
929
940
.10.1177/1077546319890213
32.
Redkar
,
S.
, and
Sinha
,
S. C.
,
2008
, “
A Direct Approach to Order Reduction of Nonlinear Systems Subjected to External Periodic Excitations
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
3
), p.
031011
.10.1115/1.2908347
You do not currently have access to this content.