Abstract

A probabilistic approach is needed to address systems with uncertainties arising in natural processes and engineering applications. For computational convenience, however, the stochastic effects are often ignored. Thus, numerical integration routines for stochastic dynamical systems are rudimentary compared to those for the deterministic case. In this work, the authors present a method to carry out stochastic simulations by using methods developed for the deterministic case. Thereby, the well-developed numerical integration routines developed for deterministic systems become available for studies of stochastic systems. The convergence of the developed method is shown and the method's performance is demonstrated through illustrative examples.

References

1.
Gardiner
,
C. W.
,
2004
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
, Springer (Series in Synergetics 13), 3rd ed.,
Springer
,
Berlin
.
2.
Wirsching
,
P. H.
,
Paez
,
T. L.
, and
Ortiz
,
K.
,
2006
,
Random Vibrations: Theory and Practice
,
Dover Publication
Mineola, NY.
3.
Wilkinson
,
D. J.
,
2009
, “
Stochastic Modelling for Quantitative Description of Heterogeneous Biological Systems
,”
Nat. Rev. Genet.
,
10
(
2
), pp.
122
133
.10.1038/nrg2509
4.
Risken
,
H.
,
1996
, “
Fokker-Planck Equation
,”
The Fokker-Planck Equation
,
Springer
, Berlin, Heidelberg, pp.
63
95
.
5.
Soize
,
C.
,
1994
,
The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions
, Vol.
17
,
World Scientific
, Singapore.
6.
Caughey
,
T.
,
1971
, “
Nonlinear Theory of Random Vibrations
,”
Advances in Applied Mechanics
, Vol.
11
,
Elsevier
, Amsterdam, The Netherlands, pp.
209
253
.
7.
Lin
,
Y.
, and
Cai
,
G.
,
2004
, “
Probabilistic Structural Dynamics: Advanced Theory and Applications
,”
McGraw-Hill Engineering Reference
,
McGraw-Hill
,
New York
.
8.
Pichler
,
L.
,
Masud
,
A.
, and
Bergman
,
L. A.
,
2013
, “
Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods-a Comparative Study
,”
Computational Methods in Stochastic Dynamics
,
Springer
, Berlin, Heidelberg, pp.
69
85
.
9.
Wehner
,
M. F.
, and
Wolfer
,
W.
,
1983
, “
Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations
,”
Phys. Rev. A
,
27
(
5
), pp.
2663
2670
.10.1103/PhysRevA.27.2663
10.
Yu
,
J.
,
Cai
,
G.
, and
Lin
,
Y.
,
1997
, “
A New Path Integration Procedure Based on Gauss-Legendre Scheme
,”
Int. J. Non-Linear Mech.
,
32
(
4
), pp.
759
768
.10.1016/S0020-7462(96)00096-0
11.
Spencer
,
B.
, and
Bergman
,
L.
,
1993
, “
On the Numerical Solution of the Fokker-Planck Equation for Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
,
4
(
4
), pp.
357
372
.10.1007/BF00120671
12.
Masud
,
A.
, and
Bergman
,
L.
,
2005
, “
Solution of the Four Dimensional Fokker-Planck Equation: Still a Challenge
,”
Icossar
, Vol.
2005
,
Citeseer
, Rotterdam, pp.
1911
1916
.
13.
Kloeden
,
P. E.
, and
Platen
,
E.
,
1999
,
Numerical Solution of Stochastic Differential Equations
(Applications of Mathematics 23) etc, [3rd corrected printing] ed.,
Springer
,
Berlin
.
14.
Rüemelin
,
W.
,
1982
, “
Numerical Treatment of Stochastic Differential Equations
,”
SIAM J. Numer. Anal.
,
19
(
3
), pp.
604
613
.10.1137/0719041
15.
Wagner
,
W.
, and
Platen
,
E.
,
1978
,
Approximation of Ito Integral Equations
,
Akademie Der Wissenschaften Der DDR. Zentralinstitut Für Mathematik Und Mechanik
, Berlin, Heidelberg.
16.
Milstein
,
G. N.
,
1994
,
Numerical Integration of Stochastic Differential Equations
, Vol.
313
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
17.
Kannan
,
D.
, and
Lakshmikantham
,
V.
,
2001
,
Handbook of Stochastic Analysis and Applications
,
CRC Press
, New York.
18.
Platen
,
E.
,
1999
, “
An Introduction to Numerical Methods for Stochastic Differential Equations
,”
Acta Numerica
,
8
, pp.
197
246
.10.1017/S0962492900002920
19.
Boyce
,
W. E.
,
1978
, “
Approximate Solution of Random Ordinary Differential Equations
,”
Adv. Appl. Probability
,
10
(
1
), pp.
172
184
.10.2307/1426724
20.
Milstein
,
G. N.
, and
Tret'yakov
,
M. V.
,
1997
, “
Numerical Methods in the Weak Sense for Stochastic Differential Equations With Small Noise
,”
SIAM J. Numer. Anal.
,
34
(
6
), pp.
2142
2167
.10.1137/S0036142996278967
21.
Milstein
,
G. N.
, and
Tretyakov
,
M. V.
,
2013
,
Stochastic Numerics for Mathematical Physics
,
Springer Science & Business Media
, Berlin, Heidelberg.
22.
Mannella
,
R.
,
2002
, “
Integration of Stochastic Differential Equations on a Computer
,”
Int. J. Mod. Phys. C
,
13
(
09
), pp.
1177
1194
.10.1142/S0129183102004042
23.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
(Series in automatic computation),
Prentice-Hall
, Englewood Cliffs, NJ.
24.
De Jalon
,
J. G.
, and
Bayo
,
E.
,
2012
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer Science & Business Media
, New York.
25.
Géradin
,
M.
, and
Rixen
,
D. J.
,
2014
,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
, Hoboken, NJ.
26.
Vig
,
J. R.
, and
Kim
,
Y.
,
1999
, “
Noise in Microelectromechanical System Resonators
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
46
(
6
), pp.
1558
1565
.10.1109/58.808881
27.
Balachandran
,
B.
, and
Magrab
,
E. B.
,
2018
,
Vibrations
,
Cambridge University Press
, Cambridge, UK.
28.
Verhulst
,
F.
,
2005
,
Methods and Applications of Singular Perturbations
,
Springer
, New York.
29.
Nayfeh
,
A. H.
,
2008
,
Perturbation Methods
,
Wiley
, Weinheim, Germany.
30.
Blagoveshchenskii
,
Y. N.
,
1962
, “
Diffusion Processes Depending on a Small Parameter
,”
Theory Probab. Its Appl.
,
7
(
2
), pp.
130
146
.10.1137/1107013
31.
Freidlin
,
M. I.
, and
Wentzell
,
A. D.
,
1998
,
Random Perturbations of Dynamical Systems, Pages
,
Springer
, Heidelberg, pp.
15
43
.
32.
Kaszás
,
B.
, and
Haller
,
G.
,
2020
, “
Universal Upper Estimate for Prediction Errors Under Moderate Model Uncertainty
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
30
(
11
), p.
113144
.10.1063/5.0021665
33.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
, Hoboken, NJ.
34.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2002
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(2002 Applied Mathematical Sciences), Corr. 7th printing ed., Vol.
42
,
Springer
,
New York
.
35.
Breunung
,
T.
,
2021
, “
Existence of Quasi-Periodic Responses in Quasi-Periodically Forced Nonlinear Mechanical Systems
,”
Nonlinear Dyn.
,
105
(
3
), pp.
1977
2004
.10.1007/s11071-021-06665-z
36.
Van Kampen
,
N. G.
,
1976
, “
The Expansion of the Master Equation
,”
Adv. Chem. Phys.
,
34
, pp.
245
309
.10.1002/9780470142530.ch5
37.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
,
SIAM
, Philadelphia, PA.
38.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1990
, “
The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
1018
1025
.10.1115/1.2897620
39.
Wehner
,
M.
, and
Wolfer
,
W.
,
1987
, “
Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations. iii. time and Functionally Dependent Coefficients
,”
Phys. Rev. A
,
35
(
4
), pp.
1795
1801
.10.1103/PhysRevA.35.1795
40.
Butcher
,
J. C.
,
2016
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
, Hoboken, NJ.
41.
Sievers
,
A.
, and
Takeno
,
S.
,
1988
, “
Intrinsic Localized Modes in Anharmonic Crystals
,”
Phys. Rev. Lett.
,
61
(
8
), pp.
970
973
.10.1103/PhysRevLett.61.970
42.
Vakais
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.10.1137/0153016
43.
Dick
,
A.
,
Balachandran
,
B.
, and
Mote
,
C.
,
2008
, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
13
29
.10.1007/s11071-007-9288-0
44.
Perkins
,
E.
,
Kimura
,
M.
,
Hikihara
,
T.
, and
Balachandran
,
B.
,
2016
, “
Effects of Noise on Symmetric Intrinsic Localized Modes
,”
Nonlinear Dyn.
,
85
(
1
), pp.
333
341
.10.1007/s11071-016-2688-2
45.
Balachandran
,
B.
,
Breunung
,
T.
,
Acar
,
G.
,
Abdulrahman
,
A.
, and
Yorke
,
J.
,
2022
, “
Dynamics of Circular Oscillator Arrays Subjected to Noise
,”
Nonlinear Dyn.
,
108
(
1
), pp.
1
14
.10.1007/s11071-021-07165-w
46.
Friedman
,
J.
,
Hastie
,
T.
,
Tibshirani
,
R
, et al.,
2001
,
The Elements of Statistical Learning
(Series in Statistics), Vol.
1
,
Springer
,
New York
.
47.
Higham
,
D. J.
,
2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
,
43
(
3
), pp.
525
546
.10.1137/S0036144500378302
You do not currently have access to this content.