Abstract

Identifying dynamical system models from measurements is a central challenge in the structural dynamics community. Nonlinear system identification, in particular, is a big challenge as there are many possible combinations of model structures, which requires expert knowledge to construct an appropriate model. Furthermore, traditional nonlinear system identification methods require a steady excitation input that is not always available in many practical applications. Recently, a technique referred to as the sparse identification of nonlinear dynamics (SINDy) algorithm was developed to discover mathematical models of general nonlinear systems. The SINDy method finds a generalized linear state-space model for an autonomous nonlinear system by analyzing the collected response data. In this work, the SINDy method is adapted and combined with the shooting method and the numerical continuation technique to form a system identification framework that can predict the nonlinear modal properties of mechanical oscillators. The proposed framework predicts the nonlinear normal modes (NNMs) of these systems by processing the noised data of the systems' free vibration response. In addition, the NNMs and the internal resonance of nonlinear systems at a high energy level can be captured using the proposed framework by processing the response data at a lower energy level. The proposed method is numerically demonstrated on a 2-degree-of-freedom mechanical oscillator. Furthermore, the effects of the measurement error and the excitation condition on NNM prediction are investigated. The NNM prediction framework presented in this paper is fairly general and is applicable to a variety of nonlinear systems.

References

1.
Antonio
,
D.
,
Zanette
,
D. H.
, and
López
,
D.
,
2012
, “
Frequency Stabilization in Nonlinear Micromechanical Oscillators
,”
Nat. Commun.
,
3
(
1
), pp.
1
6
.10.1038/ncomms1813
2.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Energy Harvesting From Impulsive Loads Using Intentional Essential Nonlinearities
,”
ASME J. Vib. Acoust.
,
133
(
1
), p. 011004.10.1115/1.4002787
3.
Amin Karami
,
M.
, and
Inman
,
D. J.
,
2012
, “
Powering Pacemakers From Heartbeat Vibrations Using Linear and Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
100
(
4
), p.
042901
.10.1063/1.3679102
4.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2020
, “
Method for Controlling Vibration by Exploiting Piecewise-Linear Nonlinearity in Energy Harvesters
,”
Proc. R. Soc. A
,
476
(
2233
), p.
20190491
.10.1098/rspa.2019.0491
5.
Gendelman
,
O. V.
,
Sapsis
,
T.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
(
1
), pp.
1
8
.10.1016/j.jsv.2010.08.014
6.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part i: A Useful Framework for the Structural Dynamicist
,”
Mech. Systems Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
7.
Hou
,
L.
,
Chen
,
Y.
, and
Cao
,
Q.
,
2014
, “
Nonlinear Vibration Phenomenon of an Aircraft Rub-Impact Rotor System Due to Hovering Flight
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
1
), pp.
286
297
.10.1016/j.cnsns.2013.06.023
8.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2019
, “
Statistical Analysis of the Nonlinear Response of Bladed Disks With Mistuning and Cracks
,”
AIAA J.
,
57
(
11
), pp.
4966
4977
.10.2514/1.J058190
9.
Saito
,
A.
,
2009
,
Nonlinear Vibration Analysis of Cracked Structures: Application to Turbomachinery Rotors With Cracked Blades
,
University of Michigan
, Ann Arbor, MI.
10.
Noël
,
J.-P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process.
,
83
, pp.
2
35
.10.1016/j.ymssp.2016.07.020
11.
Moaveni
,
B.
, and
Asgarieh
,
E.
,
2012
, “
Deterministic-Stochastic Subspace Identification Method for Identification of Nonlinear Structures as Time-Varying Linear Systems
,”
Mech. Syst. Signal Process.
,
31
, pp.
40
55
.10.1016/j.ymssp.2012.03.004
12.
Wang
,
X.
, and
Zheng
,
G.
,
2016
, “
Equivalent Dynamic Stiffness Mapping Technique for Identifying Nonlinear Structural Elements From Frequency Response Functions
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
394
415
.10.1016/j.ymssp.2015.07.011
13.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
, 46(2), pp.
433
447
.10.1115/1.3424568
14.
Peng
,
Z.
,
Lang
,
Z.
,
Wolters
,
C.
,
Billings
,
S.
, and
Worden
,
K.
,
2011
, “
Feasibility Study of Structural Damage Detection Using Narmax Modelling and Nonlinear Output Frequency Response Function Based Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
1045
1061
.10.1016/j.ymssp.2010.09.014
15.
Adams
,
D.
, and
Allemang
,
R.
,
2000
, “
A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model Through Feedback
,”
Mech. Syst. Signal Process.
,
14
(
4
), pp.
637
656
.10.1006/mssp.2000.1292
16.
Richards
,
C.
, and
Singh
,
R.
,
1998
, “
Identification of Multi-Degree-of-Freedom Non-Linear Systems Under Random Excitations by the “Reverse Path” Spectral Method
,”
J. Sound Vib.
,
213
(
4
), pp.
673
708
.10.1006/jsvi.1998.1522
17.
Marchesiello
,
S.
, and
Garibaldi
,
L.
,
2008
, “
A Time Domain Approach for Identifying Nonlinear Vibrating Structures by Subspace Methods
,”
Mech. Syst. Signal Process.
,
22
(
1
), pp.
81
101
.10.1016/j.ymssp.2007.04.002
18.
McKelvey
,
T.
,
Akçay
,
H.
, and
Ljung
,
L.
,
1996
, “
Subspace-Based Multivariable System Identification From Frequency Response Data
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
960
979
.10.1109/9.508900
19.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Y. V.
,
Pilipchuk
,
V. N.
, and
Zevin
,
A. A.
,
2001
,
Normal Modes and Localization in Nonlinear Systems
,
Springer
, Berlin.
20.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.10.1006/jsvi.1993.1198
21.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part ii: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Systems Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
22.
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2011
, “
Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes
,”
J. Sound Vib.
,
330
(
3
), pp.
486
509
.10.1016/j.jsv.2010.08.028
23.
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2011
, “
Modal Testing of Nonlinear Vibrating Structures Based on Nonlinear Normal Modes: Experimental Demonstration
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1227
1247
.10.1016/j.ymssp.2010.11.006
24.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Nat. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
25.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B (Methodological)
,
58
(
1
), pp.
267
288
.
26.
Mittelmann
,
H. D.
,
1986
, “
A Pseudo-Arclength Continuation Method for Nonlinear Eigenvalue Problems
,”
SIAM J. Numer. Anal.
,
23
(
5
), pp.
1007
1016
.10.1137/0723068
27.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.10.1016/0771-050X(80)90013-3
You do not currently have access to this content.