Abstract

Under specific wind and rain conditions, the cable may exhibit low frequency and large amplitude phonomenon, which is called the rain-wind induced vibration (RWIV). Because the RWIV phenomenon encompasses interactions among gas, liquid, and solid phases, make it difficult to reproduce through numerical simulation method. In the previous research, based on lubrication theory, researchers have established theory models of two-dimensional (2D) coupled and rigid segment of three-dimensional (3D) cables for RWIV. Based on the previous research, the new numerical simulation method for RWIV of 3D flexible cable is proposed in this paper, which can reflect the interaction among the gas, liquid, and solid phases. The aerodynamics forces are calculated using comsol. The evolution of water film is calculated using matlab. In the previous studies, the cable deformation was not considered. Hence, cable vibration is derived from the solution of a single-degree-of-freedom vibration equation. In this study, the cable is treated as a deformable body. The vibration response of the cable under external force is solved using ansys. The bidirectional coupling effect between the cable and the water film is considered. The morphology of water film on the cable surface is changing with time, which causes the variation of the lift over time. Therefore, it is necessary to discretize the time so that the lift acted on the cable at each time-step can be obtained. The Restart technique in ansys is used for this purpose. Additionally, the transmission of information can be achieved by using matlab is used to control comsol and ansys. The rain-wind induced vibration phenomenon of 3D flexible cable is reproduced by using the new numerical simulation method, analyzing the variation of water film, cable lift, cable vibration under the influence of cable deformation. The mechanism of rain-wind-induced vibration is revealed again by analysing the 3D model. In addition, the advantages and necessity of the 3D cable vibration model are demonstrated by comparing it with the 2D model simulating cable vibration

References

1.
Bosdogianni
,
A.
, and
Olivari
,
D.
,
1996
, “
Wind-and-Rain-Induced Oscillations of Cables of Stayed Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
64
(
2–3
), pp.
171
185
.10.1016/S0167-6105(96)00089-X
2.
Hikami
,
Y.
, and
Shiraishi
,
N.
,
1988
, “
Rain-Wind Induced Vibrations of Cables Stayed Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
29
(
1–3
), pp.
409
418
.10.1016/0167-6105(88)90179-1
3.
Geurts
,
C.
,
Vrouwenvelder
,
T.
,
van Staalduinen
,
P.
, and
Reusink
,
J.
,
1998
, “
Numerical Modeling of Rain-Wind-Induced Vibration: Erasmus Bridge, Rotterdam
,”
Struct. Eng. Int.
,
8
(
2
), pp.
129
135
.10.2749/101686698780489351
4.
Zuo
,
D.
,
Jones
,
N. P.
, and
Main
,
J. A.
,
2008
, “
Field Observation of Vortex and Rain-Wind-Induced Stay-Cable Vibrations in a Three-Dimensional Environment
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
1124
1133
.10.1016/j.jweia.2007.06.046
5.
Ni
,
Y. Q.
,
Wang
,
X. Y.
,
Chen
,
Z. Q.
, and
Ko
,
J. M.
,
2007
, “
Field Observations of Rain-Wind-Induced Cable Vibration in Cable-Stayed Dongting Lake Bridge
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
5
), pp.
303
328
.10.1016/j.jweia.2006.07.001
6.
Ming
,
G.
,
Cijun
,
L.
, and
Qiang
,
L. G.
,
1998
, “
Rain-Wind Induced Vibration of Cables on Cable-Stayed Bridges and Its Control
,”
Shanghai J. Mech.
,
9
(
4
), pp.
281
288
.https://link.oversea.cnki.net/doi/10.15959/j.cnki.0254-0053.1998.04.001
7.
Main
,
J. A.
, and
Jones, N
,
P.
,
1999
, “
Full Scale Measurements of Stay Cable Vibration
,”
Proceeding of the 10th International Conference on Wind Engineering
, Copenhagen, Denmark, June 21–24, pp. 963–970.http://www.jmain.sent.com.user.fm/pubs/Main-Jones-ICWE10.pdf
8.
Matsumoto
,
M.
,
Yokoyama
,
K.
, and
Miyata
,
T.
,
1989
, “
Wind-Induced Cable Vibration of Cable-Stayed Bridges in Japan
,”
Proceedings of the Canada–Japan Workshop on Bridge Aerodynamics
, Ottawa, Canada, pp.
101
110
.
9.
Matsumoto
,
M.
,
Shiraishi
,
N.
,
Kitazawa
,
M.
,
Knisely
,
C.
,
Shirato
,
H.
,
Kim
,
Y.
, and
Tsujii
,
M.
,
1990
, “
Aerodynamic Behavior of Inclined Circular Cylinders-Cable Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
63
72
.10.1016/0167-6105(90)90021-4
10.
Matsumoto
,
M.
,
Shiraishi
,
N.
, and
Shirato
,
H.
,
1992
, “
Rain-Wind Induced Vibration of Cables of Cable-Stayed Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
43
(
1–3
), pp.
2011
2022
.10.1016/0167-6105(92)90628-N
11.
Matsumoto
,
M.
,
Saitoh
,
T.
,
Kitazawa
,
M.
,
Shirato
,
H.
, and
Nishizaki
,
T.
,
1995
, “
Response Characteristics of Rain-Wind Induced Vibration of Stay-Cables of Cable-Stayed Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
57
(
2–3
), pp.
323
333
.10.1016/0167-6105(95)00010-O
12.
Matsumoto
,
M.
,
Yagi
,
T.
,
Goto
,
M.
, and
Sakai
,
S.
,
2003
, “
Rain–Wind-Induced Vibration of Inclined Cables at Limited High Reduced Wind Velocity Region
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
1–2
), pp.
1
12
.10.1016/S0167-6105(02)00331-8
13.
Matsumoto
,
M.
,
Yagi
,
T.
,
Shigemura
,
Y.
, and
Tsushima
,
D.
,
2001
, “
Vortex-Induced Cable Vibration of Cable-Stayed Bridges at High Reduced Wind Velocity
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
7–8
), pp.
633
647
.10.1016/S0167-6105(01)00063-0
14.
Yamaguchi
,
H.
,
1990
, “
Analytical Study on Growth Mechanism of Rain Vibration of Cables
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
73
80
.10.1016/0167-6105(90)90022-5
15.
Jing
,
H.
,
Xia
,
Y.
,
Li
,
H.
,
Xu
,
Y.
, and
Li
,
Y.
,
2015
, “
Study on the Role of Rivulet in Rain–Wind-Induced Cable Vibration Through Wind Tunnel Testing
,”
J. Fluids Struct.
,
59
(
10
), pp.
316
327
.10.1016/j.jfluidstructs.2015.09.008
16.
Li
,
Y.
,
Jing
,
H.
,
Xia
,
Y.
,
Xu
,
Y.
, and
Xiang
,
H.
,
2015
, “
Measurement of Rivulet Movement on Inclined Cables During Rain–Wind Induced Vibration
,”
Sens. Actuators A: Phys.
,
230
, pp.
17
24
.10.1016/j.sna.2015.03.040
17.
Jing
,
H.
,
Xia
,
Y.
,
Li
,
H.
,
Xu
,
Y.
, and
Li
,
Y.
,
2017
, “
Excitation Mechanism of Rain–Wind Induced Cable Vibration in a Wind Tunnel
,”
J. Fluids Struct.
,
68
, pp.
32
47
.10.1016/j.jfluidstructs.2016.10.006
18.
Peil
,
U.
, and
Nahrath
,
N.
,
2003
, “
Modeling of Rain-Wind Induced Vibration
,”
Wind Struct.
,
6
(
1
), pp.
41
52
.10.12989/was.2003.6.1.041
19.
Lv
,
Q.
, and
Gu
,
M.
,
2001
, “
The Analytical Model of Rain-Wind Vibration of Stay Cables
,”
Struct. Eng.
, 1, pp.
12
15
.https://link.oversea.cnki.net/doi/10.15935/j.cnki.jggcs.2001.01.003
20.
Gu
,
M.
,
Li
,
S. Y.
, and
Du
,
X. Q.
,
2007
, “
Testing Study on Wind Pressure Distributions of Stayed Cables With a Fixed Artificial Rivulet
,”
Acta Aerodyn. Sin.
,
25
(
2
), pp.
169
174
.http://kqdlxxb.xml-journal.net/article/id/9934
21.
Li
,
S. Y.
,
Gu
,
M.
, and
Chen
,
Z. Q.
,
2007
, “
Analytical Model for Rain-Wind-Induced Vibration of Three-Dimensional Continuous Stay Cable With Quasi-Moving Rivulet
,”
Eng. Mech.
,
24
(
6
), pp.
7
14
.https://www.researchgate.net/publication/279901576_Analytical_model_for_rain-wind-induced_vibration_of_three-dimensional_continuous_stay_cable_with_quasi-moving_rivulet
22.
Lemaitre
,
C.
,
Mahmud Alam
,
M.
,
Hémon
,
P.
,
de Langre
,
E.
, and
Zhou
,
Y.
,
2006
, “
Rainwater Rivulets on a Cable Subject to Wind
,”
C. R. Méc.
,
334
(
3
), pp.
158
163
.10.1016/j.crme.2006.01.005
23.
Lemaitre
,
C.
,
Hémon
,
P.
, and
Langre
,
E.
,
2007
, “
Thin Water Film Around a Cable Subject to Wind
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
9–11
), pp.
1259
1271
.10.1016/j.jweia.2007.02.007
24.
Lemaitre
,
C.
,
Langre
,
E.
, and
Hémon
,
P.
,
2010
, “
Rainwater Rivulets Running on a Stay Cable Subject to Wind
,”
Eur. J. Mech. B/Fluids
,
29
(
4
), pp.
251
258
.10.1016/j.euromechflu.2010.02.007
25.
Robertson
,
A. C.
,
Taylor
,
I. J.
,
Wilson
,
S. K.
,
Duffy
,
B. R.
, and
Sullivan
,
J. M.
,
2010
, “
Numerical Simulation of Rivulet Evolution on a Horizontal Cable Subject to an External Aerodynamic Field
,”
J. Fluids Struct.
,
26
(
1
), pp.
50
73
.10.1016/j.jfluidstructs.2009.09.003
26.
Taylor
,
I. J.
, and
Robertson
,
A. C.
,
2011
, “
Numerical Simulation of the Airflow–Rivulet Interaction Associated With the Rain-Wind Induced Vibration Phenomenon
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
9
), pp.
931
944
.10.1016/j.jweia.2011.03.012
27.
Taylor
,
I. J.
, and
Robertson
,
A. C.
,
2015
, “
Numerical Investigation of the Coupled Interaction Between an Unsteady Aerodynamic Flow Field and a Water Film Coating on a Circular Cylinder
,”
J. Fluids Struct.
,
54
, pp.
312
331
.10.1016/j.jfluidstructs.2014.11.008
28.
Xu
,
L. S.
,
Ge
,
Y. J.
, and
Zhao
,
L.
,
2011
, “
Experimental Study of Rain and Wind-Induced Vibration of Stay Cables Using a High-Precision Rain Simulation System
,”
China Civ. Eng. J.
,
44
(
5
), pp.
86
93
.https://link.oversea.cnki.net/doi/10.15951/j.tmgcxb.2011.05.005
29.
Jihong
,
B.
,
Jian
,
W.
,
Peng
,
L.
, and
Chun
,
B.
,
2014
, “
Variation of Water Film Morphology and Aerodynamic Force of Stay Cable
,”
Natural Sci. Eng. Technol.
,
47
(
6
), pp.
479
490
.
30.
Jihong
,
B.
,
Jian
,
W.
,
Qian
,
S.
, and
Peng
,
L.
,
2014
, “
2-D Coupling Between Water Film Morophology and Rain-Wind Induced Vibration of Cable
,”
Eng. Mech.
,
31
(
7
), pp.
54
60 + 77
.https://link.oversea.cnki.net/doi/10.6052/j.issn.1000-4750.2012.11.0909
31.
Bi
,
J. H.
,
Wang
,
J.
,
Shao
,
Q.
,
Lu
,
P.
,
Guan
,
J.
, and
Li
,
Q. B.
,
2013
, “
2D Numerical Analysis on Evolution of Water Film and Cable Vibration Response Subject to Wind and Rain
,”
J. Wind Eng. Ind. Aerodyn.
,
121
, pp.
49
59
.10.1016/j.jweia.2013.07.018
32.
Jian
,
W.
,
Peng
,
L.
,
Jihong
,
B.
, et al.,
2016
, “
Application of Slip Theory in the Study of Two-Degree of Freedom Model of Wind and Rain Induced Vibration of Stayed Cables
,”
J. Vib. Eng.
,
29
(
004
), pp.
737
745
.https://link.oversea.cnki.net/doi/10.16385/j.cnki.issn.1004-4523.2016.04.022
33.
Wang
,
J.
,
Lu
,
P.
,
Bi
,
J. H.
,
Guan
,
J.
, and
Qiao
,
H. Y.
,
2016
, “
Three-Phase Coupled Modelling Research on Rain–Wind Induced Vibration of Stay Cable Based on Lubrication Theory
,”
J. Fluids Struct.
,
63
, pp.
16
39
.10.1016/j.jfluidstructs.2016.02.008
34.
Jihong
,
B.
,
Ji
,
W.
,
Jian
,
G.
, and
Jian
,
W.
,
2017
, “
Numerical Simulation of Rain-Wind Induced Vibration of Stay Cables and Its Mechanism Study
,”
J. Vib. Shock.
,
36
(
11
), pp.
111
117
.https://link.oversea.cnki.net/doi/10.13465/j.cnki.jvs.2017.11.017
35.
Bi
,
J. H.
,
Guan
,
J.
,
Wang
,
J.
,
Lu
,
P.
,
Qiao
,
H. Y.
, and
Wu
,
J.
,
2018
, “
3D Numerical Analysis on Wind and Rain Induced Oscillations of Water Film on Cable Surface
,”
J. Wind Eng. Ind. Aerodyn.
,
176
, pp.
273
289
.10.1016/j.jweia.2018.03.026
36.
Jian
,
W.
,
Jihong
,
B.
,
Jian
,
G.
,
Haoyue
,
Q.
,
Qian
,
S.
,
Yan
,
Z.
, and
Qinghai
,
G.
,
2020
, “
Three-Dimensional Numerical Simulation on Rivulet Movement of Rain-Wind Induced Vibration of Stay Cable
,”
J. Vib. Eng.
,
33
(
3
), pp.
559
569
.https://link.oversea.cnki.net/doi/10.16385/j.cnki.issn.1004-4523.2020.03.015
37.
Jian
,
W.
,
Jihong
,
B.
, and
Peng
,
L.
,
2020
, “
3-D Numerical Simulation for bi-Directional Coupling Between Waterline Motion and Cable's Rain-Wind Induced Vibration
,”
J. Vib. Shock
,
39
(
3
), pp.
8
15
.https://link.oversea.cnki.net/doi/10.13465/j.cnki.jvs.2020.03.002
38.
Gao
,
D.
,
Chen
,
W.
,
Eloy
,
C.
, and
Li
,
H.
,
2018
, “
Multi-Mode Responses, Rivulet Dynamics, Flow Structures and Mechanism of Rain-Wind Induced Vibrations of a Flexible Cable
,”
J. Fluids Struct.
,
82
, pp.
154
172
.10.1016/j.jfluidstructs.2018.06.017
39.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
40.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
(
1
), pp.
57
96
.10.1016/S0889-9746(02)00099-3
41.
Sun
,
W. F.
,
2011
, “
The Mechanism Study of Rain-Wind Induced Vibration of Stay Cables Based on the Forced Vibration Device
,”
Hunan University
,
Changsha
.
42.
Li
,
D.
,
2013
, “
Study on the Theoretical Models of Rain-Wind-Induced Vibration of Cable and Analysis on Vibration Characteristics
,”
Hunan University
,
Changsha
.
43.
Li
,
H.
,
Chen
,
W. L.
,
Xu
,
F.
,
Li
,
F. C.
, and
Ou
,
J. P.
,
2010
, “
A Numerical and Experimental Hybrid Approach for the Investigation of Aerodynamic Forces on Stay Cables Suffering From Rain-Wind Induced Vibration
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1195
1215
.10.1016/j.jfluidstructs.2010.06.006
You do not currently have access to this content.