Abstract

The underlying nonlinear dynamical behavior of the linear oscillator (LO) attached with a nonlinear energy sink (NES) in which asymmetrical coupling force is employed is investigated here on the frequency-energy plot (FEP). Accordingly, the configuration of this asymmetrical nonlinear energy sink (ANES) incorporates a purely cubic-stiffness element on one side of the equilibrium position, while a linear restoring coupling stiffness acts on the other side. This configuration is capable to approximate the single-sided vibro-impact NES (SSVI NES) dynamics by employing a weak linear force in one side of the equilibrium position and strong nonlinear coupling force at the other side. The obtained FEP of the system under consideration reveals different kinds of backbone curves when the LO is attached to this ANES. Six continuous backbones of unsymmetrical nonlinear normal modes (NNMs) of 1:1 resonance between the LO and the ANES are obtained. The ANES has two fundamental backbones for in phase and antiphase periodic oscillations, respectively. The in phase backbone curve is associated with several subharmonic resonance branches which further assists resonance captures during the targeted energy transfer (TET) process. Therefore, the ANES merges significant linear and nonlinear dynamical properties in one configuration. Accordingly, an enhanced capability in TET is achieved by the ANES compared with the purely cubic-stiffness NES.

References

1.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems,
Springer Science & Business Media
, Berlin, Germany.10.1007/978-1-4020-9130-8
2.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Phys. D: Nonlinear Phenom.
,
204
(
1–2
), pp.
41
69
.10.1016/j.physd.2005.03.014
3.
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Lee
,
Y. S.
,
McFarland
,
D. M.
,
Kowtko
,
J. J.
, and
Bergman
,
L. A.
,
2005
, “
Energy Transfers in a System of Two Coupled Oscillators With Essential Nonlinearity: 1:1 Resonance Manifold and Transient Bridging Orbits
,”
Nonlinear Dyn.
,
42
(
3
), pp.
283
303
.10.1007/s11071-005-4475-3
4.
Kerschen
,
G.
,
Kowtko
,
J. J.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2006
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
285
309
.10.1007/s11071-006-9073-5
5.
Quinn
,
D. D.
,
Gendelman
,
O.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures Part I
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1228
1248
.10.1016/j.jsv.2007.10.026
6.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
7.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
8.
Kumar
,
M.
, and
Sarkar
,
A.
,
2022
, “
Nonlinear Normal Modes of a Three Degrees-of-Freedom Cyclically Symmetric Piecewise Linear System
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
10
), p.
101001
.10.1115/1.4054571
9.
Huang
,
S. C.
, and
Tien
,
M. H.
,
2024
, “
A Hybrid Continuation Framework for Analyzing Nonlinear Normal Modes of Systems With Contact Nonlinearity
,”
ASME J. Comput. Nonlinear Dyn.
,
19
(
7
), p.
071008
.10.1115/1.4064272
10.
Vakakis
,
A. F.
,
Al-Shudeifat
,
M. A.
, and
Hasan
,
M. A.
,
2014
, “
Interactions of Propagating Waves in a One-Dimensional Chain of Linear Oscillators With a Strongly Nonlinear Local Attachment
,”
Meccanica
,
49
(
10
), pp.
2375
2397
.10.1007/s11012-014-0008-9
11.
Al-Shudeifat
,
M. A.
,
2023
, “
Frequency-Energy Analysis of Coupled Linear Oscillator With Asymmetrical Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
2
), p.
024501
.10.1115/1.4056359
12.
Pun
,
D.
, and
Liu
,
Y. B.
,
2000
, “
On the Design of the Piecewise Linear Vibration Absorber
,”
Nonlinear Dyn.
,
22
, pp.
393
413
.10.1023/A:1008309409223
13.
Al-Shudeifat
,
M. A.
,
2019
, “
Nonlinear Energy Sinks With Piecewise-Linear Nonlinearities
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
12
), p.
124501
.10.1115/1.4045052
14.
Yao
,
H.
,
Cao
,
Y.
,
Zhang
,
S.
, and
Wen
,
B.
,
2018
, “
A Novel Energy Sink With Piecewise Linear Stiffness
,”
Nonlinear Dyn.
,
94
(
3
), pp.
2265
2275
.10.1007/s11071-018-4488-3
15.
Yao
,
H.
,
Cao
,
Y.
,
Wang
,
Y.
, and
Wen
,
B.
,
2019
, “
A Tri-Stable Nonlinear Energy Sink With Piecewise Stiffness
,”
J. Sound Vib.
,
463
, p.
114971
.10.1016/j.jsv.2019.114971
16.
Al-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
Spencer
, and
B. F.
, Jr.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Non-Linear Energy Sink for Shock Mitigation
,”
Int. J. Non-Linear Mech.
,
52
, pp.
96
109
.10.1016/j.ijnonlinmec.2013.02.004
You do not currently have access to this content.