Control of fluid-structure interaction is of practical importance from the perspective of wake modification and reduction of vortex-induced vibrations (VIVs). The aim of this study is to design a control to suppress vortex shedding. We perform a two-dimensional simulation of the flow past a circular cylinder using a parallel Computational Fluid Dynamics (CFD) solver. We record the velocity and pressure fields over a shedding cycle and compute the proper orthogonal decomposition (POD) modes of the divergence-free velocity and pressure, respectively. The Navier–Stokes equations are projected onto these POD modes to reduce the dynamical system to a set of ordinary-differential equations (ODEs). This dynamical system exhibits a limit cycle with negative linear damping and positive nonlinear damping. The reduced-order model is then modified by placing a pair of suction actuators and applying a control strategy using a control function method. We use the pressure POD mode distribution on the cylinder surface to optimally locate the actuators. We design a controller based on the linearized system and make it positively damped using pole-placement technique. The control-input settles to a constant value, suggesting constant suction through the actuators. We validate the results using CFD simulations in an open-loop setting and observe suppression of the hydrodynamic forces acting on the cylinder.

1.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
53
, pp.
321
575
.
2.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
3.
Ma
,
X.
, and
Karniadakis
,
G.
, 2002, “
A Low-Dimensional Model for Simulating Three-Dimensional Cylinder Flow
,”
J. Fluid Mech.
0022-1120,
458
, pp.
181
190
.
4.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzynski
,
M.
, and
Thiele
,
F.
, 2003, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
497
, pp.
335
363
.
5.
Deane
,
A. E.
,
Kevrekidis
,
I. G.
,
Karniadakis
,
G. E.
, and
Orsag
,
S. A.
, 1991, “
Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinder
,”
Phys. Fluids A
0899-8213,
3
(
10
), pp.
2337
2354
.
6.
Sirovich
,
L.
, and
Kirby
,
M.
, 1987, “
Low-Dimensional Procedure for the Characterization of Human Faces
,”
J. Opt. Soc. Am. A
0740-3232,
4
(
3
), pp.
519
524
.
7.
Gillies
,
E. A.
, 1998, “
Low-Dimensional Control of the Circular Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
371
, pp.
157
178
.
8.
Graham
,
W. R.
,
Peraire
,
J.
, and
Tang
,
K. Y.
, 1999, “
Optimal Control of Vortex Shedding Using Low-Order Models. Part I—Open-Loop Model Development
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
945
972
.
9.
Tang
,
S.
, and
Aubry
,
N.
, 2000, “
Suppression of Vortex Shedding Inspired by a Low-Dimensional Model
,”
J. Fluids Struct.
0889-9746,
14
, pp.
443
468
.
10.
Singh
,
S. N.
,
Myatt
,
J. H.
,
Addington
,
G. A.
,
Banda
,
S.
, and
Hall
,
J. K.
, 2001, “
Optimal Feedback Control of Vortex Shedding Using Proper Orthogonal Decomposition Models
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
612
618
.
11.
Cohen
,
K.
,
Siegel
,
S.
,
Wetlesen
,
D.
,
Cameron
,
J.
, and
Sick
,
A.
, 2004, “
Effective Sensor Placements for the Estimation of Proper Orthogonal Decomposition Mode Coefficients in Kármán Vortex Street
,”
J. Vib. Control
1077-5463,
10
, pp.
1857
1880
.
12.
Bergmann
,
M.
,
Cordier
,
L.
, and
Brancher
,
J. P.
, 2005, “
Optimal Rotary Control of the Cylinder Wake Using POD Reduced-Order Model
,”
Phys. Fluids
0031-9171,
17
(
9
), pp.
097101
.
13.
Siegel
,
S.
,
Cohen
,
K.
, and
McLaughlin
,
T.
, 2006, “
Numerical Simulations of a Feedback-Controlled Circular Cylinder Wake
,”
AIAA J.
0001-1452,
44
(
6
), pp.
1266
1276
.
14.
Kim
,
J.
, and
Bewley
,
T. R.
, 2007, “
A Linear Systems Approach to Flow Control
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
, pp.
383
417
.
15.
Rowley
,
C. W.
, 2005, “
Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
(
3
), pp.
997
1013
.
16.
Akhtar
,
I.
, 2008, “
Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding Using Fluidic Actuators
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
17.
Akhtar
,
I.
,
Marzouk
,
O. A.
, and
Nayfeh
,
A. H.
, 2009, “
A van der Pol-Duffing Oscillator Model of Hydrodynamic Forces on Canonical Structures
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
4
), p.
041006
.
18.
Akhtar
,
I.
,
Nayfeh
,
A. H.
, and
Ribbens
,
C. J.
, 2009, “
On the Stability and Extension of Reduced-Order Galerkin Models in Incompressible Flows: A Numerical Study of Vortex Shedding
,”
Theor. Comput. Fluid Dyn.
0935-4964,
23
(
3
), pp.
213
237
.
19.
Zang
,
Y.
,
Street
,
R.
, and
Koseff
,
J.
, 1994, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
114
, pp.
18
33
.
20.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
21.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Stanek
,
J.
, 1998, “
Numerical Investigation of Synthetic Jet Flow Fields
,”
Proceedings of the AIAA 29th Fluid Dynamics Conference
, AIAA Paper No. 1998-2910.
22.
Noack
,
B. R.
,
Papas
,
P.
, and
Monkewitz
,
P. A.
, 1999, “
The Need for a Pressure-Term Representation in Empirical Galerkin Models of Incompressible Shear Flows
,”
J. Fluid Mech.
0022-1120,
523
, pp.
339
365
.
23.
Akhtar
,
I.
,
Borggaard
,
J.
, and
Hay
,
A.
, 2010, “
Shape Sensitivity Analysis in Flow Models Using a Finite-Difference Approach
,”
Math. Probl. Eng.
1024-123X,
2010
, p.
209780
.
24.
Rediniotis
,
O. K.
,
Ko
,
J.
, and
Kurdila
,
A. J.
, 2002, “
Reduced Order Nonlinear Navier-Stokes Models for Synthetic Jets
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
433
443
.
25.
Lewin
,
G. C.
, and
Haj-Hariri
,
H.
, 2005, “
Reduced-Order Modeling of a Heaving Airfoil
,”
AIAA J.
0001-1452,
43
(
2
), pp.
270
283
.
26.
Ausseur
,
J. M.
, and
Pinier
,
J. T.
, 2003, “
Towards a Closed-Loop Feedback Control of the Flow Over NACA-4412 Airfoil
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2003-343.
27.
Arnold
,
V. I.
, 1988,
Geometric Methods in the Theory of Ordinary Differential Equations
,
Springer-Verlag
,
New York
, Chap. 3.
28.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
, pp.
449
454
.
29.
Hay
,
A.
,
Borggaard
,
J. T.
, and
Pelletier
,
D.
, 2009, “
Local Improvements to Reduced-Order Models Using Sensitivity Analysis of the Proper Orthogonal Decomposition
,”
J. Fluid Mech.
0022-1120,
629
, pp.
41
72
.
30.
Hay
,
A.
,
Borggaard
,
J.
,
Akhtar
,
I.
, and
Pelletier
,
D.
, 2010, “
Reduced-Order Models for Parameter Dependent Geometries Based on Shape Sensitivity Analysis
,”
J. Comput. Phys.
0021-9991,
229
, pp.
1327
1352
.
You do not currently have access to this content.