In this paper, complex motions of a ball in the horizontal impact pair with a periodic excitation are studied analytically using the theory of discontinuous dynamical system. Analytical conditions for motion switching caused by impacts are developed, and generic mapping structures are introduced to describe different periodic and chaotic motions. Analytical prediction of complex periodic motion of the ball in the periodically shaken impact pair is completed, and the corresponding stability and bifurcation analysis are also carried out. Numerical illustrations of periodic and chaotic motions are given.

References

1.
Hartog
,
J. P. D.
, and
Mikina
,
S. J.
, 1932, “
Forced Vibrations With Non-Linear Spring Constants
,”
ASME J. Appl. Mech.
,
58
, pp.
157
164
.
2.
Filippov
,
A. F.
, 1964, “
Differential Equations With Discontinuous Right-Hand Side
,”
Am. Math. Soc. Transl., Series 2
,
42
, pp.
199
231
.
3.
Filippov
,
A. F.
, 1988,
Differential Equations With Discontinuous Right Hand Sides
,
Kluwer Academic Publishers
,
Dordrecht
.
4.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-Smooth Dynamic Systems on the Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
,
10
, pp.
1
55
.
5.
Luo
,
A. C. J.
, 2006,
Singularity and Dynamics on Discontinuous Vector Fields
,
Elsevier
,
Amsterdam
.
6.
Luo
,
A. C. J.
, 2009,
Discontinuous Dynamical Systems on Time-varying Domains
,
HEP-Springer
,
Dordrecht
.
7.
Holmes
,
P. J.
, 1982, “
The Dynamics of Repeated Impacts With a Sinusoidally Vibrating Table
,”
J. Sound Vib.
,
84
, pp.
173
189
.
8.
Bapat
,
C. N.
, and
Popplewell
,
N.
, 1983, “
Stable Periodic Motions of an Impact-Pair
,”
J. Sound Vib.
,
87
, pp.
19
40
.
9.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
, pp.
129
155
.
10.
Heiman
,
M. S.
,
Sherman
P. J.
, and
Bajaj
A. K.
, 1987, “
On the Dynamics and Stability of an Inclined Impact Pair
,”
J. Sound Vib.
,
114
(
3
), pp.
535
547
.
11.
Heiman
,
M. S.
,
Bajaj
A. K.
, and
Sherman
P. J.
, 1988, “
Periodic Motions and Bifurcations in Dynamics of an Inclined Impact Pair
,”
J. Sound Vib.
,
124
(
1
), pp.
55
78
.
12.
Bapat
,
C. N.
, 1988, “
Impact-Pair Under Periodic Excitation
,”
J. Sound Vib.
,
120
, pp.
53
61
.
13.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
, pp.
279
297
.
14.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champney
,
A. R.
, 2001, “
Normal Form Maps for Grazing Bifurcation in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
,
160
, pp.
222
254
.
15.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A. B.
, 2002, “
Bifurcation of Dynamical Systems With Sliding: Derivation of Normal Form Mappings
,”
Physica D
,
170
, pp.
175
205
.
16.
Bapat
,
C. N.
, 1995, “
The General Motion of an Inclined Impact Damper With Friction
,”
J. Sound Vib.
,
184
, pp.
417
427
.
17.
Han
,
R. P. S.
,
Luo
,
A. C. J.
, and
Deng
,
W.
, 1995, “
Chaotic Motion of a Horizontal Impact Pair
,”
J. Sound Vib.
,
181
(
2
), pp.
231
250
18.
Luo
,
A. C. J.
and
Han
,
R. P. S.
, 1996, “
The Dynamics of a Bouncing Ball With A Sinusoidally Vibrating Table Revisited
,”
Nonlinear Dyn.
,
10
, pp.
1
18
.
19.
Peterka
,
F.
, 1996, “
Bifurcation and Transition Phenomena in an Impact Oscillator
,”
Chaos, Solitons Fractals
,
7
, pp.
1635
1647
.
20.
Blazejczyk-Okolewska
,
B.
, and
Peterka
,
F.
, 1998, “
An Investigation of the Dynamic System With Impacts
,”
Chaos, Solitons Fractals
,
9
, pp.
1321
1338
.
21.
Peterka
,
F.
, 2003, “
Behavior of Impact Oscillator With Soft and Preloaded Stop
,”
Chaos, Solitons Fractals
,
18
, pp.
79
88
.
22.
Peterka
,
F.
,
Kotera
,
T.
, and
Cipera
,
S.
, 2004, “
Explanation of Appearance and Characteristics of Intermittency Chaos of the Impact Oscillator
,”
Chaos, Solitons Fractals
,
19
, pp.
1251
1259
.
23.
Peterka
,
F.
, and
Tondl
,
A.
, 2004, “
Phenomena of Subharmonic Motions of Oscillator With Soft Impacts
,”
Chaos, Solitons Fractals
,
19
, pp.
1283
1290
.
24.
Blazejczyk-Okolewska
,
B.
, and
Kapitaniak
,
T.
, 1995, “
Dynamics of Impact Oscillator With Dry Friction
,”
Chaos, Solitons Fractals
,
7
, pp.
1455
1459
.
25.
Blazejczyk-Okolewska
,
B.
, and
Kapitaniak
,
T.
, 1998, “
Co-Existing Attractors of Impact Oscillator
,”
Chaos, Solitons Fractals
,
9
, pp.
1439
1443
.
26.
Blazejczyk-Okolewska
,
B.
, 2000, “
Study of the Impact Oscillator With Elastic Coupling of Masses
,”
Chaos, Solitons Fractals
,
11
, pp.
2487
2492
.
27.
Blazejczyk-Okolewska
,
B.
, and
Kapitaniak
,
T.
, 2003, “
Influence of the Mass and Stiffness Ratio on a Periodic Motion of Two Impacting Oscillator
,”
Chaos, Solitons Fractals
,
17
, pp.
1
10
.
28.
Czolczynski
,
K.
, 2003, “
On the Existence of a Stable Periodic Motion of Two Impacting Oscillators
,”
Chaos, Solitons Fractals
,
15
, pp.
371
379
.
29.
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
, and
Kapitaniak
,
T.
, 2009, “
Dynamics of a Two-Degree-of-Freedom Cantilever Beam With Impacts
,”
Chaos, Solitons Fractals
,
40
, pp.
1991
2006
.
30.
Giusepponi
,
S.
,
Marchesoni
,
F.
, and
Borromeio
,
M.
, 2004, “
Randomness in the Bouncing Ball Dynamics
,”
Physica A
,
351
, pp.
143
158
.
31.
Park
,
J.
,
Wang
,
S.
, and
Crocker
,
M. J.
, 2009, “
Mass Load Resonance of a Single Unit Impact Damper Caused by Impacts and the Resulting Kinetic Energy Influx
,”
J. Sound Vib.
,
323
, pp.
877
895
.
32.
Luo
,
A. C. J.
, 2002, “
An Unsymmetrical Motion in a Horizontal Impact Oscillator
,”
ASME J. Vibr. Acoust.
,
124
, pp.
420
426
.
33.
Luo
,
A. C. J.
, and
Menon
,
S.
, 2004, “
Global Chaos in a Periodically Forced, Linear System With a Dead-Zone Restoring Force
,”
Chaos, Solitons Fractals
,
19
, pp.
1189
1199
.
34.
Menon
,
S.
, and
Luo
,
A. C. J.
, 2005, “
A Global Period-1 Motion of A Periodically Forced, Piecewise Linear System
,”
Int. J. Bifurcation Chaos
,
15
, pp.
1945
1957
.
35.
Luo
,
A. C. J.
, 2005, “
The Mapping Dynamics of Periodic Motions for a Three-Piecewise Linear System Under a Periodic Excitation
,”
J. Sound Vib.
,
283
, pp.
723
748
.
36.
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
, 2007, “
Low-Dimensional Maps for Piecewise Smooth Oscillators
,”
J. Sound Vib.
,
305
, pp.
750
771
.
37.
Luo
,
A. C. J.
, and
Chen
,
L. D.
, 2006, “
Grazing Phenomena and Fragmented Strange Attractors in a Harmonically Forced, Piecewise, Linear System With Impacts
,”
IMeChE Part K: J. Multibody Dyn.
,
220
, pp.
35
51
.
38.
Luo
,
A. C. J.
, and
Chen
,
L. D.
, 2007, “
Arbitrary Periodic Motions and Grazing Switching of a Forced Piecewise-Linear, Impacting Oscillator
,”
ASME J. Vib. Acoust.
,
129
, pp.
276
285
.
39.
Luo
,
A. C. J.
, and
O’Connor
,
D.
, 2009, “
Mechanism of Impacting Chatter With Stick in Gear Transmission Systems
,”
Int. J. Bifurcation Chaos
,
19
, pp.
2093
2105
.
40.
Luo
,
A. C. J.
, and
O’Connor
,
D.
, 2009, “
Periodic Motions and Chaos With Impacting Chatter and Stick in Gear Transmission Systems
,”
Int. J. Bifurcation Chaos
,
19
, pp.
1975
1994
.
41.
Luo
,
A. C. J.
, 2008, “
A Theory for Flow Switchability in Discontinuous Dynamical Systems
,”
Nonlinear Anal.: Hybrid Syst.
,
2
(
4
), pp.
1030
1061
.
42.
Luo
,
A. C. J.
, and
Guo
,
Y.
, 2009, “
Motion Switching and Chaos of a Particle in a Generalized Fermi-Acceleration Oscillator
,”
Math. Probl. Eng.
,
2009
,
40
p.
43.
Luo
,
A.C.J.
, and
Guo
,
Y.
, 2010, “
Switching Mechanism and Complex Motions in an Extended Fermi-Acceleration Oscillator
,”
J. Comput. Nonlinear Dyn.
,
5
(
4
), pp.
1
14
.
44.
Luo
,
A. C. J.
, and
Guo
,
Y.
, 2010, “
Switchability and Bifurcation of Motions in a Double-Excited Fermi-Acceleration Oscillator
,”
Proceedings of the 2010 ASME International Mechanical Engineering Congress and Exposition
, IMECE2010-39165.
You do not currently have access to this content.