This paper concerns the problem of stabilization of uncertain fractional-order chaotic systems in finite time. On the basis of fractional Lyapunov stability theory, a robust finite-time fractional controller is introduced to control chaos of fractional-order chaotic systems in the presence of system uncertainties. The finite-time stability of the closed-loop system is analytically proved. An estimation of the convergence time is also given. Some numerical simulations are provided to illustrate the usefulness and applicability of the proposed robust finite-time control approach. It is worth noting that the proposed fractional control method is applicable for stabilizing a broad range of uncertain fractional-order nonlinear systems in a given finite time.

References

1.
Hilfer
,
R.
, 2001,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
2.
Müller
,
S.
,
Kästner
,
M.
,
Brummund
,
J.
, and
Ulbricht
,
V.
, 2011, “
A Nonlinear Fractional Viscoelastic Material Model for Polymers
,”
Comput. Mater. Sci.
,
50
, pp.
2938
2949
.
3.
Luo
,
Y.
,
Chen
,
Y. Q.
, and
Pi
,
Y.
, 2011, “
Experimental Study of Fractional Order Proportional Derivative Controller Synthesis for Fractional Order Systems
,”
Mechatronics
,
21
, pp.
204
214
.
4.
Laskin
,
N.
, 2000, “
Fractional Market Dynamics
,”
Phys. A.
,
287
, pp.
482
492
.
5.
Rivero
,
M.
,
Trujillo
,
J. J.
,
Vázquez
,
L.
, and
Velasco
,
M. P.
, 2011, “
Fractional Dynamics of Populations
,”
Appl. Math. Comput.
,
218
, pp.
1089
1095
.
6.
Özalp
,
N.
, and
Demirci
,
E.
, 2011, “
A Fractional Order SEIR Model With Vertical Transmission
,”
Math. Comput. Model.
,
54
, pp.
1
6
.
7.
Cao
,
J.
,
Ma
,
C.
,
Jiang
,
Z.
, and
Liu
,
S.
, 2011, “
Nonlinear Dynamic Analysis of Fractional Order Rub-Impact Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
1443
1463
.
8.
Ionescu
,
C.
,
Machado
,
J. T.
, and
De Keyser
,
R.
, 2011, “
Fractional-Order Impulse Response of the Respiratory System
,”
Comput. Math. Appl.
,
62
, pp.
845
854
.
9.
Pourmahmood
,
M.
,
Khanmohammadi
,
S.
, and
Alizadeh
,
G.
, 2011, “
Synchronization of Two Different Uncertain Chaotic Systems With Unknown Parameters using a Robust Adaptive Sliding Mode Controller
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
2853
2868
.
10.
Aghababa
,
M. P.
,
Khanmohammadi
,
S.
, and
Alizadeh
,
G.
, 2011, “
Finite-Time Synchronization of Two Different Chaotic Systems With Unknown Parameters Via Sliding Mode Technique
,”
Appl. Math. Model
,
35
, pp.
3080
3091
.
11.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
, 2011, “
Adaptive Finite-Time Stabilization of Uncertain Non-Autonomous Chaotic Electromechanical Gyrostat Systems with Unknown Parameters
,”
Mech. Res. Commun.
,
38
, pp.
500
505
.
12.
Aghababa
,
M. P.
, 2011, “
A Novel Adaptive Finite-Time Controller for Synchronizing Chaotic Gyros with Nonlinear Inputs
,”
Chin. Phys. B
,
20
, p.
090505
.
13.
Lu
,
J. G.
, and
Chen
,
G.
, 2006, “
A Note on the Fractional-Order Chen System
,”
Chaos Soliton Fract.
,
27
, pp.
685
688
.
14.
Lu
,
J. G.
, 2006, “
Chaotic Dynamics of the Fractional-Order Lu System and its Synchronization
,”
Phys. Lett. A
,
354
, pp.
305
311
.
15.
Lu
,
J. G.
, 2005, “
Chaotic Dynamics and Synchronization of Fractional-Order Arneodo’s Systems
,”
Chaos Soliton Fract.
,
26
, pp.
1125
1133
.
16.
Yang
,
Q.
, and
Zeng
,
C.
, 2010, “
Chaos in Fractional Conjugate Lorenz System and its Scaling Attractors
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
15
, pp.
4041
4051
.
17.
Lu
,
J. G.
, 2005, “
Chaotic Dynamics and Synchronization of Fractional-Order Genesio-Tesi Systems
,”
Chin. Phys. B
,
14
, pp.
1517
1521
.
18.
Zhu
,
H.
,
Zhou
,
S.
, and
Zhang
,
J.
, 2009, “
Chaos and Synchronization of the Fractional-Order Chua’s System
,”
Chaos Soliton Fract.
,
14
, pp.
1595
1603
.
19.
Ge
,
Z. M.
, and
Qu
,
C. Y.
, 2007, “
Chaos in a Fractional Order Modified Duffing System
,”
Chaos Soliton Fract.
,
34
, pp.
262
291
.
20.
Wang
,
X. Y.
, and
Song
,
J. M.
, 2009, “
Synchronization of the Fractional Order Hyperchaos Lorenz Systems With Activation Feedback Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
3351
335
.
21.
Hegazi
,
A. S.
, and
Matouk
,
A. E.
, 2011, “
Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System
,”
Appl. Math. Lett.
,
24
, pp.
1938
1944
.
22.
Zhong
,
Q. S.
,
Bao
,
J. F.
,
Yu
,
Y. B.
, and
Liao
,
X. F.
, 2008, “
Impulsive Control for Fractional-Order Chaotic Systems
,”
Chin. Phys. Lett.
,
25
, pp.
2812
.
23.
Lin
,
T. C.
, and
Kua
,
C. H.
, 2011, “
H Synchronization of Uncertain Fractional Order Chaotic Systems: Adaptive Fuzzy Approach
,”
ISA Trans.
,
24
, pp.
548
556
.
24.
Aghababa
,
M. P.
, 2011, “
Comments On H Synchronization of Uncertain Fractional Order Chaotic Systems: Adaptive Fuzzy Approach
,”
ISA Trans.
,
50
, pp.
548
556
.
25.
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
, 2010, “
Synchronization of Different Fractional Order Chaotic Systems using Active Control
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
15
, pp.
3536
3546
.
26.
Song
,
L.
,
Yang
,
J.
, and
Xu
,
S.
, 2010, “
Chaos Synchronization for a Class of Nonlinear Oscillators with Fractional Order
,”
Nonlinear Anal.
,
72
, pp.
2326
2336
.
27.
Pan
,
L.
,
Zhou
,
W.
,
Zhou
,
L. G.
, and
Sun
,
K.
, 2011, “
Chaos Synchronization between Two Different Fractional-Order Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
2628
2640
.
28.
Yin
,
C.
,
Zhong
,
S. M.
, and
Chen
,
W. F.
, 2012, “
Design of Sliding Mode Controller for a Class of Fractional-Order Chaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
356
366
.
29.
Chen
,
D. Y.
,
Liu
,
Y. X.
,
Ma
,
X. Y.
, and
Zhang
,
R. F.
, 2011, “
Control of a Class of Fractional-Order Chaotic Systems Via Sliding Mode
,”
Nonlinear Dyn.
, to be published.
30.
Aghababa
,
M. P.
, 2011, “
Comments on Control of a Class of Fractional-Order Chaotic Systems Via Sliding Mode
,”
Nonlinear Dyn.
, to be published.
31.
Aghababa
,
M. P.
, 2012, “
Comments on Design of Sliding Mode Controller for a class of Fractional-Order Chaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
1485
1488
.
32.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
, 2009, “
Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
, pp.
1965
1969
.
33.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic Press
,
New York
.
34.
Hardy
,
G. H.
,
Littlewood
,
J. E.
, and
Polya
,
G.
, 1952,
Inequalities
,
Cambridge University Press
,
Cambridge
.
35.
Utkin
,
V. I.
, 1992,
Sliding Modes in Control Optimization
,
Springer Verlag
,
Berlin, Germany
.
36.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
, 2002, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.
You do not currently have access to this content.