Humans use carefully chosen step locations to restore their balance during locomotion and in response to perturbations. Understanding the relationship between foot placement and balance restoration is key to developing useful dynamic human balance diagnostic tests and balance rehabilitation treatments. The link between foot placement and balance restoration is studied in this paper using a simplified monopedal model that has a circular foot, coined the Euler pendulum. The Euler pendulum provides a convenient method of studying the stability properties of three-dimensional (3D) bipedal systems without the burden of large system equations typical of multibody systems. The Euler pendulum has unstable regions of its state-space that can be made to transition to a statically stable region using an appropriate foot placement location prior to contacting the ground. The planar foot placement estimator (FPE) method developed by Wight et al. is extended in this work in order to find foot placement locations in 3D to balance the 3D Euler pendulum. Preliminary experimental data shows that the 3D foot placement estimator (3DFPE) location corresponds very well with human foot placement during walking, gait termination, and when landing from a jump. In addition, a sensitivity analysis revealed that the assumptions of the 3DFPE are reasonable for human movement. Metrics for bipedal instability and balance performance suggested in this work could be of practical significance for health care professionals.

References

1.
Angus
,
D. E.
,
Cloutier
,
E.
,
Albert
,
T.
,
Chenard
,
D.
,
Shariatmadar
,
A.
,
Pickett
,
W.
, and
Hartling
,
L.
, 1998, “
The Economic Burden of Unintentional Injury in Canada, A Summary
,” SmartRisk, www.smartrisk.cawww.smartrisk.ca
2.
Patla
,
A. E.
,
Prentice
,
S. D.
,
Reitdyk
,
S.
,
Allard
,
F.
, and
Martin
,
C.
, 1999, “
What Guides the Selection of Alternate Foot Placement During Locomotion in Humans
,”
Exp. Brain Res.
,
128
, pp.
441
450
.
3.
Patla
,
A. E.
, 2003, “
Strategies for Dynamic Stability During Adaptive Human Locomotion
,”
IEEE Eng. Med. Biol. Mag.
, pp.
48
52
.
4.
Juang
,
J.
, 2000, “
Fuzzy Neural Network Approaches for Robotic Gait Synthesis
,”
IEEE Trans. Syst. Man Cybern., Part B: Cybern.
,
30
(
4
), pp.
594
601
.
5.
Taga
,
G.
, 1995, “
A Model of the Neuro–Musculo-Skeletal System for Human Locomotion
,”
Biol. Cybern.
,
73
, pp.
97
111
.
6.
Townsend
,
M. A.
, and
Seireg
,
A.
, 1972, “
The Synthesis of Bipedal Locomotion
,”
J. Biomech.
,
5
, pp.
71
83
.
7.
Redfern
,
M. S.
, and
Schumann
,
T.
, 1994, “
A Model of Foot Placement During Gait
,”
J. Biomech.
,
27
, pp.
1339
1346
.
8.
Peasgood
,
M.
,
Kubica
,
E.
, and
McPhee
,
J.
, 2007, “
Stabilization and Energy Optimization of a Dynamic Walking Gait Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
2
, pp.
65
72
.
9.
Millard
,
M.
,
McPhee
,
J.
, and
Kubica
,
E.
, 2009, “
Multi-Step Forward Dynamic Gait Simulation
,”
Multibody Dynamics: Computational Methods and Applications
,
C. L.
Bottasso
, ed.,
Springer
,
New York
, pp.
25
43
.
10.
Wojtyra
,
M.
, 2003, “
Multibody Simulation Model of Human Walking
,”
Mech. Based Des. Struct. Mach.
,
31
(
3
), pp.
357
377
.
11.
Pratt
,
J. E.
, and
Pratt
,
G. A.
, 1999, “
Exploiting Natural Dynamics in the Control of a 3D Bipedal Walking Simulation
,”
Proceedings of the International Conference on Climbing and Walking Robots
,
Portsmouth, UK
.
12.
Kuo
,
A.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
J. Biomech. Eng.
,
124
, pp.
113
120
.
13.
McGeer
,
T.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.
14.
Raibert
,
M. H.
, 1986,
Legged Robots That Balance
, 1st ed.,
The MIT Press
,
Cambridge, MA
.
15.
Wight
,
D.
,
Kubica
,
E.
, and
Wang
,
D.
, 2008, “
Introduction of the Foot Placement Estimator: A Dynamic Measure of Balance for Bipedal Robotics
,”
J. Comput. Nonlinear Dyn.
,
3
,
011009
.
16.
Vukobratovic
,
M.
, and
Barovac
,
B.
, 2004, “
Zero-Moment Point—Thirty Five Years of its Life
,”
Int. J. Hum. Robot.
,
1
(
1
), pp.
157
173
.
17.
Kuo
,
A.
, 1999, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
, pp.
917
930
.
18.
Pratt
,
J.
, and
Pratt
,
G.
, 1999, “
Exploiting Natural Dynamics in the Control of a 3D Bipedal Walking Simulation
,”
Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR99)
, Portsmouth, UK.
19.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yok
,
K.
, and
Hirukawa
,
H.
, 2001, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
Proceedings of the 2001 IEEE/RSJ
, pp.
239
246
.
20.
Winter
,
D.
, 1991,
Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
University of Waterloo Press
,
Waterloo, ON, Canada
.
21.
Muybridge
,
E.
, 2007,
Muybridge’s Human Figure in Motion CD-ROM and Book
, 1st ed.,
Dover Publications
,
Mineola, NY
.
22.
Millard
,
M.
,
Wight
,
D.
,
McPhee
,
J.
,
Kubica
,
E.
, and
Wang
,
D.
, 2009, “
Human Foot Placement and Balance in the Sagittal Plane
,”
J. Biomech. Eng.
,
131
(
12
),
121001
.
23.
He
,
J.
,
Kram
,
R.
, and
McMahon
,
T. A.
, 1991, “
Mechanics of Running Under Simulated Low Gravity
,”
J. Appl. Physiol.
,
71
, pp.
863
870
.
24.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
, 2006, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. London, Ser. B
,
273
, pp.
2861
2867
.
25.
Ferris
,
D. P.
,
Louie
,
M.
, and
Farley
,
C. T.
, 1998, “
Running in the Real World: Adjusting Leg Stiffness for Different Surfaces
,”
Proc. R. Soc. London, Ser. B
,
265
, pp.
989
994
.
26.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
, 2006, “
Capture Point: A Step Toward Humanoid Push Recovery
,” Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Genoa, Italy.
27.
MacDonald
,
A. J.
, and
MacDonald
,
K. T.
, 2001, “
The Rolling Motion of a Disk on a Horizontal Plane
,”
Physics
, pp.
1
20
.
28.
Khallil
,
H. K.
, 2001,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
29.
Herr
,
H.
, and
Popovic
,
M.
, 2008, “
Angular Momentum in Human Walking
,”
J. Exp. Biol.
,
211
, pp.
467
481
.
30.
C-Motion, Inc., 2010, “
Visual3D Online Documentation
,” http://www.c-motion.com/help/http://www.c-motion.com/help/
31.
Winter
,
D.
, 2005,
Biomechanics and Motor Control of Human Movement
, 3rd ed.,
John Wiley and Sons
,
Hoboken, NJ
.
32.
de Leva
,
P.
, 1996, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
, pp.
1223
1230
.
33.
Hreljac
,
A.
, and
Marshall
,
R.
, 2000, “
Algorithms to Determine Event Timing During Normal Walking Using Kinematic Data
,”
J. Biomech.
,
33
, pp.
783
786
.
34.
Kingma
,
I.
,
Toussaint
,
H. M.
,
De Looze
,
M. P.
, and
Van Dieen
,
J. H.
, 1996, “
Segment Inertial Parameter Evaluation in Two Anthropomorphic Models by Application of a Dynamic Linked Segment Model
,”
J. Biomech.
,
29
, pp.
693
704
.
You do not currently have access to this content.