Abstract

Various methods for solving systems of differential-algebraic equations (DAE systems) are known from literature. Here, an alternative approach is suggested, which is based on a collocated constraints approach (CCA). The basic idea of the method is to introduce intermediate time points. The approach is rather general and may basically be applied for solving arbitrary DAE systems. Here, the approach is discussed for constrained mechanical systems of index-3. Application of the presented formulations for nonmechanical higher index DAE systems is also possible. We discuss index-2 formulations with one intermediate time point and index-1 implementations with two intermediate time points. The presented technique is principally independent of the time discretization method and may be applied in connection with different time integration schemes. Here, implementations are investigated for backward differentiation formula (BDF) and Newmark-type integrator schemes. A direct application of the presented approach yields a system of discretized equations with larger dimensions. The increased dimension of the discretized system of equations may be considered as the main drawback of the presented technique. The main advantage is that the approach may be used in a very straightforward manner for solving rather arbitrary multiphysical DAE systems with arbitrary index. Hence, the method might, for instance, be attractive for general purpose DAE integrators, since the approach is not tailored for special DAE systems (e.g., constrained mechanical systems). Numerical examples will demonstrate the straightforward application of the approach.

References

1.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.10.1115/1.2803258
2.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.10.1115/1.2803257
3.
Masarati
,
P.
,
2011
, “
Constraint Stabilization of Mechanical Systems in ODE Form
,”
Proc. IMechE Part K: J. Multibody Dyn.
,
225
(
1
), pp.
12
33
.
4.
Masarati
,
P.
,
2011
, “
Adding Kinematic Constraints to Purely Differential Dynamics
,”
Comput. Mech.
,
47
(
2
), pp.
187
203
.10.1007/s00466-010-0539-4
5.
Negrut
,
D.
,
Jay
,
L. O.
, and
Khude
,
N.
,
2009
, “
A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
4(
2), p.
021008
. 10.1115/1.3079784
6.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer-Verlag
,
New York
.
7.
Eich-Soellner
,
E.
, and
Führer
,
C.
,
1998
,
Numerical Methods in Multibody Dynamics
,
B. G. Teubner, Stuttgart
,
Germany
.
8.
Kunkel
,
P.
, and
Mehrmann
,
V.
,
2004
, “
Index Reduction for Differential-Algebraic Equations by Minimal Extension
,”
ZAMM—J. Appl. Math. Mech.
,
84
(
9
), pp.
579
597
.10.1002/zamm.200310127
9.
Kunkel
,
P.
, and
Mehrmann
,
V.
,
2006
,
Differential-Algebraic Equations: Analysis and Numerical Solution
,
European Mathematical Society
, Zürich, Switzerland.
10.
Baumgarte
,
J. W.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamic Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
11.
Gear
,
C. W.
,
Gupta
,
G. K.
, and
Leimkuhler
,
B. J.
,
1985
, “
Automatic Integration of the Euler-Lagrange Equations With Constraints
,”
J. Comp. Appl. Math.
,
12–13
, pp.
77
90
.10.1016/0377-0427(85)90008-1
12.
Mattsson
,
S. E.
, and
Söderlind
,
G.
,
1993
, “
Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives
,”
SIAM J. Sci. Comput.
,
14
(
3
), pp.
677
692
.10.1137/0914043
13.
Brenan
,
K. E.
,
Campbell
,
S. L. V.
, and
Petzold
,
L. R.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
14.
Simeon
,
B.
,
2013
,
Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach
,
Springer
, Berlin.
15.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
16.
Brüls
,
O.
, and
Arnold
,
M.
,
2008
, “
The Generalized-α Scheme as a Linear Multi-Step Integrator: Towards a General Mechatronic Simulator
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), pp.
41
57
.10.1115/1.2960475
17.
Cardona
,
A.
, and
Geradin
,
M.
,
1998
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
(
3
), pp.
801
820
.10.1016/0045-7949(89)90255-1
18.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
19.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2007
, “
On an Implementation of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
.10.1115/1.2389231
20.
Betsch
,
P.
,
2005
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I: Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–52
), pp.
5159
5190
.10.1016/j.cma.2005.01.004
21.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems—Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
(
4
), pp.
499
552
.10.1002/nme.1639
22.
Betsch
,
P.
, and
Steinmann
,
P.
,
2002
, “
A DAE Approach to Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
8
(
3
), pp.
365
391
.10.1023/A:1020934000786
23.
Betsch
,
P.
,
Hesch
,
C.
,
Sänger
,
N.
, and
Uhlar
,
S.
,
2010
, “
Variational Integrators and Energy-Momentum Schemes for Flexible Multibody Dynamics
,” ASME
J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031001
.10.1115/1.4001388
24.
Garcia Orden
,
J. C.
, and
Goicolea
,
J. M.
,
2002
, “
Conserving Properties in Constrained Dynamics of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
4
(
2–3
), pp.
225
244
.
25.
Geradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
, Chichester, UK.
26.
Goicolea
,
J. M.
, and
Garcı́aOrden
,
J. C.
,
2000
, “
Dynamic Analysis of Rigid and Deformable Multibody Systems With Penalty Methods and Energy-Momentum Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
789
804
.10.1016/S0045-7825(99)00362-X
27.
Goicolea
,
J. M.
, and
Garcia Orden
,
J. C.
,
2002
, “
Quadratic and Higher-Order Constraints in Energy-Conserving Formulations of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
1
), pp.
3
29
.10.1023/A:1015292531469
28.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2008
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III: Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
(
1–2
), pp.
45
72
.10.1007/s11044-007-9056-4
29.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2006
, “
Objective Energy-Momentum Conserving Integration for the Constrained Dynamics of Geometrically Exact Beams
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
19–22
), pp.
2313
2333
.10.1016/j.cma.2005.05.002
30.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2004
, “
Energy-Conserving Integration of Constrained Hamiltonian Systems—A Comparison of Approaches
,”
Comput. Mech.
,
33
(
3
), pp.
174
185
.10.1007/s00466-003-0516-2
31.
Petzold
,
L. R.
,
1982
, “
Differential-Algebraic Equations Are Not ODE's
,”
SIAM J. Sci., Stat. Comput.
,
3
(
3
), pp.
367
384
.10.1137/0903023
32.
Petzold
,
L. R.
,
1986
, “
Order Results for Implicit Runge-Kutta Methods Applied to Differential Algebraic Systems
,”
SIAM J. Numer. Anal.
,
23
(
4
), pp.
837
852
.10.1137/0723054
33.
Schaub
,
M.
, and
Simeon
,
B.
,
2003
, “
Blended Lobatto Methods in Multibody Dynamics
,”
ZAMM J. Appl. Math. Mech.
,
83
(
10
), pp.
720
728
.10.1002/zamm.200310069
34.
Schweizer
,
B.
, and
Li
,
P.
,
2015
, “
Solving DAE Systems: Alternative Index-2 and Index-1 Approaches for Constrained Mechanical Systems
,”
Comput. Nonlinear Dyn.
,
11
(
4
), p.
044501
.10.1115/1.4031287
35.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
,
2003
, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
121
142
.10.1023/A:1022506312444
36.
Negrut
,
D.
,
1998
, “
On the Implicit Integration of Differential-Algebraic Equations of Multibody Dynamics
,” Ph.D. thesis, The University of Iowa, Iowa City, IA.
37.
Meijaard
,
J.
,
2003
, “
Application of Runge–Kutta–Rosenbrock Methods to the Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn. J.
,
10
(
3
), pp.
263
288
.10.1023/A:1025990403660
38.
Orzechowski
,
G.
, and
Fraczek
,
J.
,
2012
, “
Integration of the Equations of Motion of Multibody Systems Using Absolute Nodal Coordinate Formulation
,”
Acta Mech. Autom.
,
6
(
2
), pp.
75
83
.
39.
Meyer
,
T.
,
Li
,
P.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2018
, “
Implicit Co-Simulation Method for Constraint Coupling With Improved Stability Behavior
,”
Multibody Syst. Dyn.
,
44
(
2
), pp.
135
161
.10.1007/s11044-018-9632-9
40.
Haug
,
E. J.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
, Boston, MA.
41.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
, Cambridge, UK.
42.
Simeon
,
B.
,
1998
, “
Order Reduction of Stiff Solvers at Elastic Multibody Systems
,”
Appl. Numer. Math.
,
28
(
2–4
), pp.
459
475
.10.1016/S0168-9274(98)00060-9
43.
Simeon
,
B.
,
2001
, “
Numerical Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
6
(
4
), pp.
305
325
.10.1023/A:1012096631385
44.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
2009
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 3rd ed.,
Springer
, Berlin.
45.
Hairer
,
E.
, and
Wanner
,
G.
,
2010
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer
, Berlin.
46.
Bauchau
,
O. A.
,
Epple
,
A.
, and
Bottasso
,
C. L.
,
2009
, “
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021007
.10.1115/1.3079826
47.
Bottasso
,
C. L.
,
Dopico
,
D.
, and
Trainelli
,
L.
,
2008
, “
On the Optimal Scaling of Index Three DAEs in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
(
1–2
), pp.
3
20
.10.1007/s11044-007-9051-9
48.
Arnold
,
M.
, and
Bruls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
49.
Jay
,
L. O.
, and
Negrut
,
D.
,
2007
, “
A Second Order Extension of the Generalized-α Method for Constrained Systems in Mechanics
,”
Multibody Dynamics ECCOMAS Thematic Conference
,
C. L.
Bottasso
,
P.
Masarati
, and
L.
Trainelli
, eds., Milano, Italy, June 25–28, pp. 143–158.
50.
Negrut
,
D.
,
Jay
,
L. O.
,
Khude
,
N.
, and
Heyn
,
T.
,
2007
, “
A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
Conference Proceedings of Multibody Dynamics, ECCOMAS Thematic Conference
,
C. L.
Bottasso
,
P.
Masarati
, and
L.
Trainelli
, eds., Milano, Italy, June 25–28, pp. 149–160.
51.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
52.
Yen
,
J.
,
Petzold
,
L. R.
, and
Raha
,
S.
,
1998
, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
3–4
), pp.
341
355
.10.1016/S0045-7825(97)00261-2
53.
Lunk
,
C.
, and
Simeon
,
B.
,
2006
, “
Solving Constrained Mechanical Systems by the Family of Newmark and α-Methods
,”
ZAMM J. Appl. Math. Mech.
,
86
(
10
), pp.
772
784
.10.1002/zamm.200610285
54.
Maplesoft,
2014
, “
Maple User Manual
,” Maplesoft, Waterloo, ON, Canada, accessed Dec. 6, 2019, https://www.maplesoft.com/documentation_center/maple18/UserManual.pdf
55.
Eich
,
E.
,
1993
, “
Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems With Algebraic Constraints
,”
SIAM J. Numer. Anal.
,
30
(
5
), pp.
1467
1482
.10.1137/0730076
56.
Haug
,
E. J.
, and
Yen
,
J.
,
1992
, “
Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
296
304
.10.1115/1.2916946
57.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
,
1985
, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
J. Mech. Trans. Auto. Des.
,
107
(
1
), pp.
82
87
.10.1115/1.3258699
58.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.10.1115/1.3256318
59.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Software (TOMS)
,
31
(
3
), pp.
363
396
.10.1145/1089014.1089020
You do not currently have access to this content.