This paper describes a computational framework for constructing point clouds using digital projection patterns. The basic principle behind the approach is to project known patterns on the object using a digital projector. A digital camera is then used to take images of the object with the known projection patterns imposed on it. Due to the presence of 3D faces of the object, the projection patterns appear distorted in the images. The images are analyzed to construct the 3D point cloud that is capable of introducing the observed distortions in the images. The approach described in this paper presents three advances over the previously developed approaches. First, it is capable of working with the projection patterns that have variable fringe widths and curved fringes and hence can provide improved accuracy. Second, our algorithm minimizes the number of images needed for creating the 3D point cloud. Finally, we use a hybrid approach that uses a combination of reference plane images and estimated system parameters to construct the point cloud. This approach provides good run-time computational performance and simplifies the system calibration.

1.
Breuckmann
,
B.
,
Halbauer
,
F.
,
Klaas
,
E.
, and
Kube
,
M.
, 1997, “
3D-Metrologies for Industrial Applications
,”
Proc. SPIE
0277-786X,
3102
, pp.
20
29
.
2.
Toyooka
,
S.
, and
Iwaasa
,
Y.
, 1986, “
Automatic Profilometry of 3-D Diffuse Objects by Spatial Phase Detection
,”
Appl. Opt.
0003-6935,
25
(
10
), pp.
1630
1633
.
3.
Hu
,
Q.
,
Huang
,
P. S.
,
Fu
,
Q.
, and
Chiang
,
F.
, 2003, “
Calibration of a Three-Dimensional Shape Measurement System
,”
Opt. Eng. (Bellingham)
0091-3286,
42
(
2
), pp.
487
493
.
4.
Huang
,
P. S.
,
Hu
,
Q.
, and
Chiang
,
F.
, 2003, “
Error Compensation for a Three-Dimensional Shape Measurement System
,”
Opt. Eng. (Bellingham)
0091-3286,
42
(
2
), pp.
482
486
.
5.
Legarda-Sáenz
,
R.
,
Bothe
,
T.
, and
Jüptner
,
W. P.
, 2004, “
Accurate Procedure for the Calibration of a Structured Light System
,”
Opt. Eng. (Bellingham)
0091-3286,
43
(
2
), pp.
464
471
.
6.
Sitnik
,
R.
,
Kujawińska
,
M.
, and
Woźnicki
,
J.
, 2002, “
Digital Fringe Projection System for Large-Volume 360-Deg Shape Measurement
,”
Opt. Eng. (Bellingham)
0091-3286,
41
(
2
), pp.
443
449
.
7.
Hibino
,
K.
,
Oreb
,
B. F.
,
Farrant
,
D. I.
, and
Larkin
,
K. G.
, 1995, “
Phase Shifting for Nonsinusoidal Waveforms With Phase-Shift Errors
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
12
(
4
), pp.
761
768
.
8.
Surrel
,
Y.
, 1996, “
Design of Algorithms for Phase Measurements by the Use of Phase Stepping
,”
Appl. Opt.
0003-6935,
35
(
1
), pp.
51
60
.
9.
Coggrave
,
C. R.
, and
Huntley
,
J. M.
, 2000, “
Optimization of a Shape Measurement System Based on Spatial Light Modulators
,”
Opt. Eng. (Bellingham)
0091-3286,
39
(
1
), pp.
91
98
.
10.
Huntley
,
J. M.
, and
Saldner
,
H. O.
, 1993, “
Temporal Phase-Unwrapping Algorithm for Automated Interferogram Analysis
,”
Appl. Opt.
0003-6935,
32
(
17
), pp.
3047
3052
.
11.
Zhao
,
H.
,
Chen
,
W.
, and
Tan
,
Y.
, 1994, “
Phase-Unwrapping Algorithm for the Measurement of Three-Dimensional Object Shapes
,”
Appl. Opt.
0003-6935,
33
(
20
), pp.
4497
4500
.
12.
Mermelstein
,
M. S.
,
Feldkhun
,
D. L.
, and
Shirley
,
L. G.
, 2000, “
Video-Rate Surface Profiling With Acousto-Optic Accordion Fringe Interferometry
,”
Opt. Eng. (Bellingham)
0091-3286,
39
(
1
), pp.
106
113
.
13.
Brown
,
D. C.
, 1971, “
Close-Range Camera Calibration
,”
Photogramm. Eng.
0099-1112,
37
(
8
), pp.
855
866
.
15.
Peng
,
T.
, and
Gupta
,
S. K.
, 2007, “
Algorithms for Generating Adaptive Projection Patterns for 3-D Shape Measurement
,”
Proceedings of IDETC/CIE 2007
, Paper No. DETC2007-35452.
You do not currently have access to this content.