The biologically inspired Sprawl family of hexapedal robots has shown that fast and stable running is possible with only open-loop control. Proper design of the passively self-stabilizing leg structure has enabled these robots to run at speeds of up to 15 bodylengths/s and over uneven terrain. Unlike other running robots built to date, the Sprawl robots’ front and rear legs are designed to preform distinct functional roles. Like the cockroaches that inspired them, the front legs of the robots act to lift and decelerate, while the rear legs provide the primary forward thrust. This paper uses a dynamic simulation to investigate the effect that changing the robot’s leg structure and posture has on its performance. The simulation results support our hypothesis that the use of a differential leg function induced through postural adjustments effectively trades efficiency for stability.

1.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
R.
,
T. C.
, 1977, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.
0002-9513,
233
, pp.
R243
R261
.
2.
Full
,
R.
, and
Koditschek
,
D.
, 1999, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
0022-0949,
202
(
23
), pp.
3325
3332
.
3.
Raibert
,
M. H.
, 1986,
Legged Robots That Balance
,
MIT Press series in artificial intelligence
,
MIT Press
,
Cambridge, MA
.
4.
Full
,
R.
,
Autumn
,
K.
,
Chung
,
J. I.
, and
Ahn
,
A.
, 1998, “
Rapid Negotiation of Rough Terrain by the Death-Head Cockroach
,”
Am. Zool.
0003-1569,
38
, p.
81A
.
5.
Cham
,
J. G.
,
Karpick
,
J.
,
Clark
,
J. E.
, and
Cutkosky
,
M. R.
, 2001, “
Stride Period Adaptation for a Biomimetic Running Hexapod
,”
International Symposium of Robotics Research
.
6.
Kim
,
S.
,
Clark
,
J. E.
, and
Cutkosky
,
M. R.
, 2004, “
Isprawl: Autonomy, and the Effects of Power Transmission
,”
International Conference on Climbing and Walking Robots (CLAWAR)
,
Professional Engineering
,
Madrid, Spain
, Vol.
7
.
7.
Full
,
R. J.
,
Blickhan
,
R.
, and
Ting
,
L. H.
, 1991, “
Leg Design in Hexapedal Runners
,”
J. Exp. Biol.
0022-0949,
158
(
UL
), pp.
369
390
.
8.
Jindrich
,
D.
, and
Full
,
R.
, 1999, “
Many-Legged Maneuverability: Dynamics of Turning in Hexapods
,”
J. Exp. Biol.
0022-0949,
202
(
12
), pp.
1603
1623
.
9.
Schmitt
,
J.
, and
Holmes
,
P.
, 2000, “
Mechanical Models for Insect Locomotion: Dynamics and Stability in the Horizontal Plane i. Theory
,”
Biol. Cybern.
0340-1200,
83
(
6
), pp.
501
515
.
10.
Bailey
,
S. A.
,
Cham
,
J. G.
,
Cutkosky
,
M. R.
, and
Full
,
R.
, 2000, “
Biomimetic Robotic Mechanisms Via Shape Deoposition Manufacturing
,”
International Symposium for Robitics Research (ISRR2000)
,
J.
Hollerbach
and
D. E.
Koditschek
, eds.,
Snowbird, UT
, Oct. 9–12.
11.
Merz
,
R.
,
B.
,
P. F.
,
Ramaswami
,
K.
,
Terk
,
M.
, and
Weiss
,
L. E.
, 1994, “
Shape Deposition Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
The University of Texas
,
Austin
, Aug. 8–10.
12.
Xu
,
X.
,
Cheng
,
W.
,
Dudek
,
D.
,
Hatanaka
,
M.
,
Cutkosky
,
M. R.
, and
Full
,
R.
, 2000, “
Material Modeling for Shape Deposition Manufacturing of Biomimetic Componentsd
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Baltimore, Maryland
, Sep. 10–14.
13.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
14.
Clark
,
J. E.
, 2004, “
Design, Simulation, and Stability of a Hexapedal Running Robot
,” Ph.D. thesis, Stanford University.
15.
McClung
,
A. J.
,
Cham
,
J. G.
, and
Cutkosky
,
M. R.
, 2004, “
Dynamic Maneuvering of a Biologically Inspired Hexapedal Robot
,”
ASME IMECE Proceedings
,
Anaheim, CA
, Nov. 13–19.
16.
Clark
,
J. E.
,
Cham
,
J. G.
,
Bailey
,
S. A.
,
Froehlich
,
E. M.
,
Nahata
,
P. K.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
, 2001, “
Biomimetic Design and Fabrication of a Hexapedal Running Robot
,”
Proceedings-IEEE International Conference on Robotics and Automation
,
Seoul, Korea
, May 21–26, Vol.
4
, pp.
3643
3649
.
17.
McGhee
,
R. B.
, and
Frank
,
A. A.
, 1968, “
On the Stability Properties of Quadruped Creeping Gaits
,”
Math. Biosci.
0025-5564,
3
, pp.
331
351
.
18.
Orin
,
D. E.
, 1976, “
Interactive Control of a Six-Legged Vehicle with Optimization of Both Stability and Energy
,” Ph.D. thesis, Ohio State University.
19.
Lin
,
B. S.
, and
Song
,
S. M.
, 1993, “
Dynamic Modeling, Stability and Energy Efficiency of a Quadrupedal Walking Machine
,”
IEEE International Conference on Robotics and Automation
,
Atlanta, Georgia
, May, pp.
367
373
.
20.
Wirber
,
P. B.
, 2002, “
On the Stability of Walking Systems
,”
Proceedings of the International Workshop on Humanoid and Human Friendly Robotics
,
Tsykyba, Japan
, Dec. 2002.
21.
Sastry
,
S.
, 1999,
Nonlinear Systems: Analysis, Stability and Control
,
Springer
,
Verlag
.
22.
Buehler
,
M.
,
Koditschek
,
D. E.
, and
Kindlmann
,
P. J.
, 1994, “
Planning and Control of a Juggling Robot
,”
Int. J. Robot. Res.
0278-3649,
13
(
2
), pp.
101
118
.
23.
Full
,
R.
,
Kubow
,
T.
,
Schmitt
,
J.
,
Holmes
,
P.
, and
Koditschek
,
D.
, 2002, “
Quantifying Dynamic Stability and Maneuverability in Legged Locomotion
,”
Integr. Comp. Biol.
1540-7063,
42
(
1
), pp.
149
157
.
24.
Mombaur
,
K. D.
, 2001, “
Stability Optimization of Open-Loop Controlled Walking Robots
,” Ph.D. thesis, University of Heidelberg.
25.
Fukuoka
,
Y.
,
Kimuar
,
H.
, and
Cohen
,
A. H.
, 2003, “
Adaptive Dynamics Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts
,”
Int. J. Robot. Res.
0278-3649,
22
(
3–4
), pp.
187
202
.
26.
Vukobratovic
,
M.
,
Frank
,
A. A.
, and
Juricic
,
D.
, 1970, “
On the Stability of Biped Locomotion
,”
IEEE Trans. Biomed. Eng.
0018-9294,
17
(
1
), pp.
25
36
.
27.
Cham
,
J. G.
, 2002, “
On Stability and Performance in Open-Loop Running
,” Ph.D. thesis, Stanford University.
28.
Pratt
,
J.
,
Chew
,
C.-M.
,
Torres
,
A.
,
Dilworth
,
P.
, and
Pratt
,
G.
, 2001, “
Virtual Model Control: An Intuitive Approach for Bipedal Locomotion
,”
Int. J. Robot. Res.
0278-3649,
20
(
2
), pp.
129
143
.
29.
Taga
,
G.
, 1995, “
A Model of the Neuro-Musculo-Skeletal System for Human Locomotion ii. Real-Time Adaptability Under Various Constraints
,”
Biol. Cybern.
0340-1200,
73
(
2
), pp.
113
121
.
30.
Koditschek
,
D.
, and
Buehler
,
M.
, 1991, “
Analysis of a Simplified Hopping Robot
,”
Int. J. Robot. Res.
0278-3649,
10
(
6
), pp.
587
605
.
31.
McGeer
,
T.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
9
(
2
), pp.
62
82
.
32.
Jindrich
,
D.
, and
Full
,
R.
, 2002, “
Dynamic Stabilization of Rapid Hexapedal Locomotion
,”
J. Exp. Biol.
0022-0949,
205
(
18
), pp.
2803
2823
.
You do not currently have access to this content.