The stabilization problem is investigated for a class of uncertain systems with multiple time-varying delays. The considered system includes the uncertain nonlinear time delay functions, whose bounds are in the form of polynomial-type functions with unknown coefficients. The system is decomposed into two subsystems based on the input matrix. For the first subsystem, a time delay dependent linear virtual control input is constructed. Then, a memoryless state feedback controller is designed based on backstepping method. By employing new Lyapunov–Krasovskii functional, we show that the closed-loop system is exponentially stable. Finally, simulations are conducted to verify the effectiveness of the proposed method.

1.
Gu
,
K.
,
Kharitonov
,
V. L.
, and
Chen
,
J.
, 2003,
Stability of Time-Delay Systems
,
Birkhauser
,
Berlin
.
2.
Wang
,
Z. D.
,
Goodall
,
D. P.
, and
Burnham
,
K. J.
, 2002, “
On Designing Observers for Time-Delay Systems With Non-Linear Disturbances
,”
Int. J. Control
0020-7179,
75
(
11
), pp.
803
811
.
3.
Gao
,
H.
,
Lam
,
J.
,
Wang
,
C.
, and
Xu
,
S.
, 2004, “
H-Infinity Model Reduction for Discrete Time-Delay Systems: Delay-Independent and Dependent Approaches
,”
Int. J. Control
0020-7179,
77
(
4
), pp.
321
335
.
4.
He
,
Y.
,
Wu
,
M.
,
She
,
J.
, and
Liu
,
G.
, 2004, “
Delay-Dependent Robust Stability Criteria for Uncertain Neutral Systems With Mixed Delays
,”
Syst. Control Lett.
0167-6911,
51
(
1
), pp.
57
65
.
5.
Xia
,
Y.
, and
Jia
,
Y.
, 2002, “
Robust Stability Functionals of State Delayed Systems With Polytopic Type Uncertainties Via Parameter-Dependent Lyapunov Functions
,”
Int. J. Control
0020-7179,
75
(
16–17
), pp.
1427
1434
.
6.
Lam
,
J.
,
Gao
,
H.
, and
Wang
,
C.
, 2007, “
Stability Analysis for Continuous Systems With Two Additive Time-Varying Delay Components
,”
Syst. Control Lett.
0167-6911,
56
(
1
), pp.
16
24
.
7.
He
,
Y.
,
Wang
,
Q.
,
Xie
,
L.
, and
Lin
,
C.
, 2007, “
Further Improvement of Free-Weighting Matrices Technique for Systems With Time-Varying Delay
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
2
), pp.
293
299
.
8.
Gao
,
H.
, and
Chen
,
T.
, 2007, “
New Results on Stability of Discrete-Time Systems With Time-Varying State Delay
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
2
), pp.
328
334
.
9.
Sabanovic
,
A.
,
Fridman
,
L.
, and
Spurgeon
,
S. K.
, 2004,
Variable Structure Systems: From Principles to Implementation
,
IEE Book Series
,
New York
.
10.
Shi
,
P.
,
Xia
,
Y.
,
Liu
,
G.
, and
Rees
,
D.
, 2006, “
On Designing of Sliding-mode Control for Stochastic Jump Systems
,”
IEEE Trans. Autom. Control
0018-9286,
51
(
1
), pp.
97
103
.
11.
Luo
,
N.
, and
Delasen
,
M.
, 1993, “
State Feedback Sliding Mode Control of a Class of Uncertain Time Delay Systems
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
140
(
4
), pp.
261
274
.
12.
El-Khazali
,
R.
, 1998, “
Variable Structure Robust Control of Uncertain Time-Delay Systems
,”
Automatica
0005-1098,
34
(
3
), pp.
327
332
.
13.
Xia
,
Y.
, and
Jia
,
Y.
, 2003, “
Robust Sliding-Mode Control for Uncertain Time-Delay Systems: An, LMI Approach
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
6
), pp.
1086
1092
.
14.
Oucheriah
,
S.
, 2003, “
Exponential stabilization of linear delayed systems using sliding-mode controllers
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
50
(
6
), pp.
826
830
.
15.
Li
,
X.
, and
Decarlo
,
R.
, A., 2003, “
Robust Sliding Mode Control of Uncertain Time-Delay Systems
,”
Int. J. Control
0020-7179,
76
(
13
), pp.
1296
1305
.
16.
Oucheriah
,
S.
, 2005, “
Adaptive Variable Structure Control of Linear Delayed Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
4
), pp.
710
714
.
17.
Hua
,
C.
,
Guan
,
X.
, and
Duan
,
G.
, 2004, “
Variable Structure Adaptive Fuzzy Control for a Class of Nonlinear Time-Delay Systems
,”
Fuzzy Sets Syst.
0165-0114,
148
(
3
), pp.
453
468
.
18.
Niu
,
Y.
,
Ho
,
D. W. C.
, and
Lam
,
J.
, 2005, “
Robust Integral Sliding Mode Control for Uncertain Stochastic Systems With Time-Varying Delay
,”
Automatica
0005-1098,
41
, pp.
873
880
.
19.
Hua
,
C.
,
Guan
,
X.
, and
Shi
,
P.
, 2005, “
Robust Adaptive Control for Uncertain Time-Delay Systems
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
19
(
7
), pp.
531
545
.
20.
Zheng
,
F.
,
Wang
,
Q.
, and
Lee
,
T.
, 2005, “
Adaptive Robust Control of Uncertain Time Delay Systems
,”
Automatica
0005-1098,
41
(
8
), pp.
1375
1383
.
21.
Xu
,
S.
, and
Lam
,
J.
, 2007, “
On Equivalence and Efficiency of Certain Stability Criteria for Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
1
), pp.
95
101
.
22.
Wang
,
R.
, and
Zhao
,
J.
, 2007, “
Exponential Stability Analysis for Discrete-Time Switched Linear Systems With Time-Delay
,”
Int. J. of Innovative Computing, Information & Control
,
3
(
6B
), pp.
1557
1564
.
23.
Hassan
,
M.
, and
Boukas
,
K.
, 2007, “
Multilevel Technique for Large Scale, LQR With Time-Delays and Systems Constraints
,”
Int. J. Innovative Computing, Information & Control
,
3
(
2
), pp.
419
434
.
You do not currently have access to this content.