This paper investigates the design of guaranteed cost controllers for a class of linear systems with a state delay using a time-multiplied linear quadratic cost function. Based on delay-dependent and delay-independent stability criteria, guaranteed cost controllers can be constructed via solutions to linear matrix inequalities (LMIs) such that the resulting closed-loop system is stable and a specified time-multiplied linear integral-quadratic cost function has an upper bound. By the cone complementary linearization method, delay-dependent state feedback controllers can be derived in terms of LMIs. A numerical example is provided to demonstrate the effectiveness of the proposed method.

1.
Gao
,
H.
, and
Wang
,
C.
, 2003, “
Delay-Dependent Robust H∞ and L2−L∞ Filtering for a Class of Uncertain Nonlinear Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
48
, pp.
1661
1666
.
2.
Gu
,
K.
, and
Niculescu
,
S. I.
, 2003, “
Survey on Recent Results in the Stability and Control of Time-Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
158
165
.
3.
Niculescu
,
S. I.
, 2001,
Delay Effects on Stability: A Robust Control Approach
,
Springer-Verlag
,
Heidelberg, Germany
.
4.
Wang
,
Q.
,
Lam
,
J.
,
Xu
,
S.
,
Zhang
,
L.
, 2006, “
Delay-Dependent Gamma-Suboptimal H-Infinity Model Reduction for Neutral Systems With Time-Varying Delays
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
394
399
.
5.
Benjelloun
,
K.
,
Boukas
,
E. K.
, and
Yang
,
H.
, 1996, “
Robust Stabilizability of Uncertain Linear Time-Delay Systems With Markovian Jump Parameters
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
, pp.
776
783
.
6.
Lin
,
C.
,
Wang
,
Q. G.
, and
Lee
,
T. H.
, 2006, “
A Less Conservative Robust Stability Test for Linear Uncertain Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
51
, pp.
87
91
.
7.
He
,
Y.
,
Wu
,
M.
,
She
,
J. H.
, and
Liu
,
G. P.
, 2004, “
Parameter-Dependent Lyapunov Functional for Stability of Time-Delay Systems With Polytopic-Type Uncertainties
,”
IEEE Trans. Signal Process.
1053-587X,
49
, pp.
828
832
.
8.
Gao
,
H.
, and
Wang
,
C.
, 2004, “
A Delay-Dependent Approach to Robust H∞ Filtering for Uncertain Discrete-Time State-Delayed Systems
,”
IEEE Trans. Signal Process.
1053-587X,
52
, pp.
1631
1640
.
9.
Gao
,
H.
, and
Chen
,
T.
, 2007, “
New Results on Stability of Discrete-Time Systems With Time-Varying State Delay
,”
IEEE Trans. Signal Process.
1053-587X,
52
, pp.
328
334
.
10.
Shi
,
P.
,
Boukas
,
E. K.
,
Shi
,
Y.
, and
Agarwal
,
R. K.
, 2003, “
Optimal Guaranteed Cost Control of Uncertain Discrete Time-Delay Systems
,”
J. Comput. Appl. Math.
0377-0427,
157
, pp.
435
451
.
11.
Xu
,
B.
, and
Liu
,
Y.-H.
, 2003, “
Delay-Dependent/Delay-Independent Stability of Linear Systems With Multiple Time-Varying Delays
,”
IEEE Trans. Autom. Control
0018-9286,
48
, pp.
697
701
.
12.
Gao
,
H.
, and
Wang
,
C.
, 2002, “
Comments and Further Results on: A Descriptor System Approach to H∞ Control of Linear Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
253
270
.
13.
Lam
,
J.
,
Gao
,
H.
, and
Wang
,
C.
, 2007, “
Stability Analysis for Continuous Systems With Two Additive Time-Varying Delay Components
,”
Syst. Control Lett.
0167-6911,
56
, pp.
16
24
.
14.
Yue
,
D.
, and
Han
,
Q. L.
, 2005, “
Delay-Dependent Exponential Stability of Stochastic Systems With Time-Varying Delay, Nonlinearity, and Markovian Switching
,”
IEEE Trans. Autom. Control
0018-9286,
50
, pp.
217
222
.
15.
Moneimani
,
S. O.
, and
Petersen
,
I. R.
, 1998, “
Guaranteed Cost Control of Uncertain Systems With a Time-multiplied Quadratic Cost Function: An Approach Based on Linear Matrix Inequalities
,”
Automatica
0005-1098,
34
, pp.
651
654
.
16.
Boukas
,
E. K.
, and
Liu
,
Z. K.
, 2001, “
Suboptimal Regulators for Discrete Time Jump Linear Systems With Time-Multiplied Performance Index
,”
Proceedings of American Control Conference
,
VA
, June 25–27, pp.
83
88
.
17.
Boukas
,
E. K.
,
Liu
,
Z. K.
, and
Al-Sunni
,
F.
, 2003, “
Guaranteed Cost Control of a Markovian Jump Linear System Using a Time-Multiplied Cost Function
,”
J. Optim. Theory Appl.
0022-3239,
116
, pp.
183
204
.
18.
Xu
,
S.
,
Lam
,
J.
, and
Verriest
,
E. I.
, 2003, “
An LMI Approach to Guaranteed Cost Control for Uncertain Linear Neutral Delay Systems
,”
Int. J. Robust Nonlinear Control
1049-8923,
13
, pp.
35
53
.
19.
Yue
,
D.
, and
Lam
,
J.
, 2005, “
Non-Fragile Guaranteed Cost Control for Uncertain Descriptor Systems With Time-Varying State and Input Delays
,”
Opt. Control Appl. Methods
0143-2087,
26
, pp.
85
105
.
20.
Lien
,
C. H.
, and
Hou
,
Y. Y.
, 2005, “
Guaranteed Cost Observer-Based Control for a Class of Uncertain Time-Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
723
728
.
21.
Fu
,
Y. M.
,
Duan
,
G. R.
, and
Qin
,
L.
, 2006, “
Robust Guaranteed Cost Observer Design for Uncertain Descriptor Systems With State Delays and Markovian Jumping Parameters
,”
IMA J. Math. Control Inf.
0265-0754,
23
, pp.
403
412
.
22.
Xu
,
S.
, and
Lam
,
J.
, 2006, “
Improved Delay-Dependent Stabily Criteria for Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
50
, pp.
384
387
.
23.
Mahmoud
,
M. S.
, and
Al-Muthairi
,
N. F.
, 1994, “
Design of Robust Controllers for Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
39
, pp.
995
999
.
24.
Mao
,
X.
,
Koroleva
,
N.
, and
Rodkina
,
A.
, 1998, “
Robust Stability of Uncertain Stochastic Differential Delay Equations
,”
Syst. Control Lett.
0167-6911,
35
, pp.
325
336
.
25.
Xu
,
S.
,
Lam
,
J.
, and
Zhong
,
M.
, 2006, “
New Exponential Estimates for Time-Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
51
, pp.
1501
1505
.
26.
Moon
,
Y. S.
,
Park
,
P. G.
,
Kwon
,
W. H.
, and
Lee
,
Y. S.
, 2001, “
Delay-Dependent Robust Stabilization of Uncertain State-Delayed Systems
,”
Int. J. Control
0020-7179,
74
, pp.
1447
1455
.
27.
Ghaoui
,
L. E.
,
Oustry
,
F.
, and
Ait-Rami
,
M.
, 1997, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
1171
1176
.
28.
Xu
,
S.
,
Lam
,
J.
, and
Zhou
,
Y.
, 2006, “
Delay-Dependent Guaranteed Cost Control for Uncertain Systems With State and Input Delays
,”
IEE Proc.: Control Theory Appl.
1350-2379,
153
, pp.
243
257
.
You do not currently have access to this content.