Using a classic problem from robotics of a vertical hopping machine, we demonstrate an approach for investigating the safety of a hybrid discrete/continuous dynamic system operating in an uncertain environment. The challenges imposed by the environment are expressed in terms of constraints imposed in the phase space of the system as it undergoes periodic motion. The approach is demonstrated first with a hopper that has state feedback to govern the timing of thrust and subsequently for a timer-based hopper. The latter case increases the dimensionality of the problem and must be treated numerically. However, the use of a multiresolution surface representation of the feasible regions in state space reduces the computational burden of the approach.

1.
Raibert
,
M. H.
, 1986,
Legged Robots That Balance
,
MIT
,
Cambridge, MA
.
2.
Fukuoka
,
Y.
,
Kimura
,
H.
, and
Cohen
,
A. H.
, 2002, “
Adaptive Dynamic Waling of a Quaddruped Robot on Irregular Terrain Based on Biological Concepts
,”
Int. J. Robot. Res.
0278-3649,
22
(
3
), pp.
187
202
.
3.
Moore
,
E. Z.
,
Campbell
,
D.
,
Grimmager
,
F.
, and
Buehler
,
M.
, 2002, “
Reliable Stair Climbing in the Simple Hexapod RHex
,”
IEEE International Conference on Robotics and Automation
.
4.
Saranli
,
U.
,
Beuhler
,
M.
, and
Koditschek
,
D. E.
, 2000, “
Design, Modeling and Preliminary Control of a Compliant Hexapod Robot
,”
IEEE International Conference on Robotics and Automation
,
San Francisco, CA
.
5.
Cham
,
J. G.
,
Bailey
,
S. A.
, and
Cutkosky
,
M. R.
, 2000, “
Robust Dynamic Locomotion Through Feedforward-Preflex Interaction
,”
ASME IMECE Proceedings
,
Orlando, FL
.
6.
Clark
,
J. E.
,
Cham
,
J. G.
,
Bailey
,
S. A.
,
Froehlich
,
E. M.
,
Nahata
,
P. K.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
, 2001, “
Biomimetic Design and Fabrication of a Hexapedal Running Robot
,”
IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3643
3649
.
7.
Kim
,
S.
,
Clark
,
J. E.
, and
Cutkosky
,
M. R.
, 2004, “
iSprawl, Autonomy, and the Effects of Power Transmission
,”
Seventh International Conference on Climbing and Walking Robots
,
Madrid, Spain
.
8.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D.
, 2001, “
RHex—A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robot. Res.
0278-3649,
20
(
7
), pp.
616
631
.
9.
Koditschek
,
D. E.
, and
Bühler
,
M.
, 1991, “
Analysis of a Simplified Hopping Robot
,”
Int. J. Robot. Res.
0278-3649,
10
(
6
), pp.
587
605
.
10.
Vakakis
,
A. F.
,
Burdick
,
J. W.
, and
Caughey
,
T. K.
, 1991, “
An “Interesting” Strange Attractor in the Dynamics of a Hopping Robot
,”
Int. J. Robot. Res.
0278-3649,
10
(
6
), pp.
606
618
.
11.
Ringrose
,
R.
, 1997, “
Self-Stabilizing Running
,”
IEEE International Conference on Robotics and Automation
,
Albuquerque, NM
.
12.
Berkemeier
,
M. D.
, and
Desai
,
K. V.
, 1999, “
Control of Hopping Height in Legged Robots Using a Neural-Mechanical Approach
,”
IEEE International Conference on Robotics and Automation
,
Detroit, MI
, pp.
1695
1701
.
13.
Komsuoglu
,
H.
, and
Koditschek
,
D. E.
, 2000, “
Preliminary Analysis of a Biologically Inspired 1-DOF “Clock” Stabilized Hopper
,”
Proceedings of World Multiconference on Systemics, Cybernetics and Informatics
,
Orlando, FL
, Vol.
9
, pp.
670
675
.
14.
Seth
,
B.
,
Seshu
,
P.
,
Shanmuganathan
,
P. V.
,
Vichare
,
V. V.
, and
Raj
,
P.
, 2007, “
Search for Initial Conditions for Sustained Hopping of Passive Springy-Leg Offset-Mass Hopping Robot
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
, pp.
522
526
.
15.
Poulakakis
,
I.
,
Papadopoulos
,
E.
, and
Beuhler
,
M.
, 2006, “
On the Stability of Passive Dynamics of Quadrupedal Running With a Bounding Gait
,”
Int. J. Robot. Res.
0278-3649,
25
(
7
), pp.
669
687
.
16.
Hirose
,
S.
, 1994, “
A Study of Design and Control of a Quadruped Walking Vehicle
,”
Int. J. Robot. Res.
0278-3649,
3
, pp.
113
133
.
17.
McGhee
,
R. B.
, and
Iswandhi
,
G. I.
, 1979, “
Adaptive Locomotion of a Multilegged Robot Over Rough Terrain
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-9
, pp.
176
182
.
18.
Hodgins
,
J. K.
, and
Raibert
,
M. H.
, 1991, “
Adjusting Step Length for Rough Terrain Locomotion
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
3
), pp.
289
98
.
19.
Zeglin
,
G.
, 1999, “
The Bow Leg Hopping Robot
,” Ph.D. thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
20.
Cham
,
J. G.
,
Karpick
,
J. K.
, and
Cutkosky
,
M. R.
, 2004, “
Stride Period Adaptation for a Biomimetic Running Hexapod
,”
Int. J. Robot. Res.
0278-3649,
23
(
2
), pp.
141
153
.
21.
Zhang
,
Z. G.
,
Fukuoka
,
Y.
, and
Kimura
,
H.
, 2005, “
Adaptive Running of a Quadruped Robot Using Delayed Feedback Control
,”
IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
.
22.
Tomlin
,
C. J.
,
Lygeros
,
J.
, and
Sastry
,
S.
, 2000, “
A Game Theoretic Approach to Controller Design for Hybrid Systems
,”
Proc. IEEE
0018-9219,
88
(
7
), pp.
949
970
.
23.
Bryson
,
A. E.
, and
Ho
,
Y.-C.
, 1975,
Applied Optimal Control
,
Hemisphere
,
Washington, DC
.
24.
Isaacs
,
R.
, 1965,
Differential Games
,
Wiley
,
New York
.
25.
Branicky
,
M. S.
,
Borkar
,
V. S.
, and
Mitter
,
S. K.
, 1994, “
A Unified Framework for Hybrid Control: Background, Model, and Theory
,”
Proceedings of the 33rd IEEE Conference on Decision and Control
,
Buena Vista, FL
, pp.
4228
4234
.
26.
Brockett
,
R. W.
, 1988, “
On the Computer Control of Movement
,”
IEEE Internation Conference on Robotics and Automation
,
Philadelphia, PA
.
27.
Brockett
,
R.
, 1993, “
Hybrid Models for Motion Control Systems
,”
Essays on Control: Perspectives in the Theory and Its Application
,
Birkhauser
,
Boston, MA
.
28.
Mosterman
,
P. J.
, and
Biswas
,
G.
, 1998, “
A Theory of Discontinuities in Physical System Models
,”
J. Franklin Inst.
0016-0032,
335B
(
3
), pp.
401
439
.
29.
Mosterman
,
P. J.
, and
Biswas
,
G.
,
Szitpanovits
,
J.
, 1998, “
A Hybrid Modeling and Verification Paradigm for Embedded Control Systems
,”
Control Engineering Practice
,
Elsevier
,
Amsterdam
.
30.
Nerode
,
A.
, and
Kohn
,
W.
, 1993, “
Multiple Agent Hybrid Control Architecture
,”
Hybrid Systems
,
Springer-Verlag
,
New York
, pp.
297
316
.
31.
Heymann
,
M.
,
Lin
,
F.
, and
Meyer
,
G.
, 1997, “
Control Synthesis for a Class of Hybrid Systems Subject to Configuration-Based Safety Constraints
,” Technical Paper No. 112196.
32.
Howley
,
B.
, 2006, “
Safe Control Strategies for Hopping Over Uneven Terrain
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
33.
Lygeros
,
J.
,
Tomlin
,
C.
, and
Sastry
,
S.
, 1997, “
Multi-Objective Hybrid Controller Synthesis
,”
Hybrid and Real-Time Systems
(
Lecture Notes in Computer Science
),
Springer-Verlag
,
New York
, Vol.
1201
.
34.
Tomlin
,
C. J.
, 1998, “
Hybrid Control of Air Traffic Management Systems
,” Ph.D. thesis, Department of Electrical Engineering, University of California, Berkeley.
35.
Full
,
R. J.
,
Autumn
,
K.
,
Chung
,
J. I.
, and
Anh
,
A.
, 1998, “
Rapid Negotiation of Rough Terrain by the Death-Head Cockroach
,”
Am. Zool.
0003-1569,
38
, p.
81A
.
36.
Brown
,
I. E.
, and
Loeb
,
G. E.
, 1999, “
A Reductionist Approach to Creating and Using Neuromusculoskeletal Models
,”
Biomechanics and Neural Control of Posture and Movement
,
Springer-Verlag
,
New York
.
37.
Cham
,
J. G.
, 2002, “
On Performance and Stability in Open-Loop Running
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
38.
Mitchell
,
I. M.
, and
Bayen
,
A.
, and
Tomlin
,
C. J.
, 2005, “
A Time Dependent Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dynamic Games
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
7
), pp.
947
957
.
39.
Stillwell
,
J.
, 1993,
Classical Topology and Combinatorial Group Theory
,
Springer-Verlag
,
New York
.
40.
Nemytskii
,
V. V.
, and
Stepanov
,
V. V.
, 1989,
Qualitative Theory of Differential Equations
,
Dover
,
New York
.
You do not currently have access to this content.