This paper investigates the design of an iteration-based controller combined with feedback control to address the positioning error caused by hysteresis in a shape memory alloy (SMA) actuator. Without compensation, the positioning error due to hysteresis can be excessively large (greater than 20%), therefore limiting the performance of SMAs in positioning applications. An iterative controller based on the Preisach hysteresis model is used to compensate for the hysteresis. However, one of the major challenges with SMA at or near the phase-transition zones, from martensite to austenite and vice versa, is the output response is shown to be sensitive to small changes in the input. In practice, an iterative controller provides limited performance due to lack of robustness. It is demonstrated that combining a simple feedback controller with an iterative controller provides the needed robustness to enable high-precision tracking. Experimental results are presented that show maximum tracking error of 0.15% of the total displacement range—this value is approximately the noise level of the sensor measurement.

1.
Lagoudas
,
D. C.
, 2008,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer
,
New York
.
2.
Kim
,
B.
,
Lee
,
M. G.
,
Lee
,
Y. P.
,
Kim
,
Y.
, and
Lee
,
G.
, 2006, “
An Earthworm-Like Micro Robot Using Shape Memory Alloy Actuator
,”
Sens. Actuators, A
0924-4247,
125
, pp.
429
437
.
3.
Liang
,
Y.
,
Kuga
,
Y.
, and
Taya
,
M.
, 2006, “
Design of Membrane Actuator Based on Ferromagnetic Shape Memory Alloy Composite for Synthetic Jet Applications
,”
Sens. Actuators, A
0924-4247,
125
, pp.
512
518
.
4.
Luo
,
Y.
,
Okuyama
,
T.
,
Takagi
,
T.
,
Kamiyama
,
T.
,
Nishi
,
K.
, and
Yambe
,
T.
, 2005, “
Thermal Control of Shape Memory Alloy Artificial Anal Sphincters for Complete Implantation
,”
Smart Mater. Struct.
,
14
, pp.
29
35
. 0964-1726
5.
Hashimoto
,
M.
,
Takeda
,
M.
,
Sagawa
,
H.
,
Chiba
,
I.
, and
Sat
,
K.
, 1985, “
Shape Memory Alloy and Robotic Actuator
,”
J. Rob. Syst.
,
2
(
1
), pp.
3
25
. 0741-2223
6.
Ma
,
N.
,
Song
,
G.
, and
Lee
,
H. -J.
, 2004, “
Position Control of Shape Memory Alloy Actuators With Internal Electrical Resistance Feedback Using Neural Networks
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
777
783
.
7.
Brinson
,
L. C.
,
Bekker
,
A.
, and
Hwang
,
S.
, 1996, “
Deformation of Shape Memory Alloys Due to Thermo-Induced Transformation
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
97
107
. 1045-389X
8.
Lee
,
C. J.
, and
Mavroidis
,
C.
, 2002, “
Analytical Dynamic Model and Experimental Robust and Optimal Control of Shape-Memory-Alloy Bundle Actuators
,”
Proceedings of the ASME IMECE
, Vol.
71
, pp.
491
498
.
9.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
Bettering Operation of Robots by Learning
,”
J. Rob. Syst.
0741-2223,
1
(
2
), pp.
123
140
.
10.
Moore
,
K. L.
,
Dahleh
,
M.
, and
Bhattacharyya
,
S. P.
, 1992, “
Iterative Learning Control: A Survey and New Results
,”
J. Rob. Syst.
0741-2223,
9
(
5
), pp.
563
594
.
11.
Croft
,
D.
,
Shed
,
G.
, and
Devasia
,
S.
, 2001, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
35
43
.
12.
Mayergoyz
,
I. D.
, 1991,
Mathematical Models of Hysteresis
,
Springer-Verlag
,
New York
.
13.
Hu
,
M.
,
Du
,
H.
,
Ling
,
S. -F.
,
Zhou
,
Z.
, and
Li
,
Y.
, 2004, “
Motion Control of an Electrostrictive Actuator
,”
Mechatronics
,
14
(
2
), pp.
153
161
. 0957-4158
14.
Iyer
,
R. V.
,
Tan
,
X.
, and
Krishnaprasad
,
P. S.
, 2005, “
Approximate Inversion of the Preisach Hysteresis Operator With Application to Control of Smart Actuators
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
6
), pp.
798
810
.
15.
Leang
,
K. K.
, and
Devasia
,
S.
, 2006, “
Design of Hysteresis-Compensating Iterative Learning Control for Piezo Positioners: Application to Atomic Force Microscopes
,”
Mechatronics
0957-4158,
16
, pp.
141
158
.
16.
Galinaitis
,
W. S.
, and
Rogers
,
R. C.
, 1998. “
Control of a Hysteretic Actuator Using Inverse Hysteresis Compensation
,”
Proceedings of the SPIE Conference on Mathematics and Control in Smart Structures
, Vol.
3323
, pp.
267
277
.
You do not currently have access to this content.