Abstract

A hybrid nonlinear optimal control design is experimentally implemented on a magnetostrictive Terfenol-D actuator to illustrate enhanced tracking control at relatively high speed. The control design employs a homogenized energy model to quantify rate-dependent nonlinear and hysteretic ferromagnetic switching behavior. The homogenized energy model is incorporated into a finite-dimensional nonlinear optimal control design to directly compensate for the nonlinear and hysteretic magnetostrictive constitutive behavior of the Terfenol-D actuator. Additionally, robustness to operating uncertainties is addressed by incorporating proportional-integral (PI) perturbation feedback around the optimal open loop response. Experimental results illustrate significant improvements in tracking control in comparison to PI control. Accurate displacement tracking is achieved for sinusoidal reference displacements at frequencies up to 1 kHz using the hybrid nonlinear control design, whereas tracking errors become significant for the PI controller for frequencies equal to or greater than 500 Hz.

1.
Park
,
S. -E.
, and
Shout
,
T.
, 1997, “
Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals
,”
J. Appl. Phys.
0021-8979,
82
(
4
), pp.
1804
1811
.
2.
Giessibl
,
F.
, 2003, “
Advances in Atomic Force Microscopy
,”
Rev. Mod. Phys.
0034-6861,
75
, pp.
949
983
.
3.
Nealis
,
J.
, and
Smith
,
R.
, 2007, “
Model-Based Robust Control Design for Magnetostrictive Transducers Operating in Hysteretic and Nonlinear Regimes
,”
IEEE Trans. Control Syst. Technol.
,
15
(
1
), pp.
22
39
. 1063-6536
4.
Lynch
,
C.
, 1996, “
The Effect of Uniaxial Stress on the Electro-Mechanical Response of 8/65/35 PLZT
,”
Acta Mater.
1359-6454,
44
(
10
), pp.
4137
4148
.
5.
O’Handley
,
R.
,
Murray
,
S.
,
Marioni
,
M.
,
Nembach
,
H.
, and
Allen
,
S.
, 2000, “
Phenomenology and Giant Magnetic-Field-Induced Strain in Ferromagnetic Shape-Memory Materials
,”
J. Appl. Phys.
0021-8979,
87
(
9
), pp.
4712
4717
.
6.
Smith
,
R.
,
Salapaka
,
M.
,
Hatch
,
A.
,
Smith
,
J.
, and
De
,
T.
, 2002, “
Model Development and Inverse Compensator Design for High Speed Nanopositioning
,”
Proceedings of the 41st IEEE Conference on Decision Control
, pp.
3652
3657
.
7.
Cavallo
,
A.
,
Natale
,
C.
,
Pirozzi
,
S.
,
Visone
,
C.
, and
Formisano
,
A.
, 2004, “
Feedback Control Systems for Micropositioning Tasks With Hysteresis Compensation
,”
IEEE Trans. Magn.
,
40
(
2
), pp.
876
879
. 0021-8979
8.
Tan
,
X.
, and
Baras
,
J.
, 2004, “
Modeling and Control of Hysteresis in Magnetostrictive Actuators
,”
Automatica
0005-1098,
40
, pp.
1469
1480
.
9.
Ge
,
P.
, and
Jouaneh
,
M.
, 1996, “
Tracking Control of a Piezoceramic Actuator
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
3
), pp.
209
216
.
10.
Janocha
,
H.
, and
Kuhnen
,
K.
, 2000, “
Real-Time Compensation of Hysteresis and Creep in Piezoelectric Actuators
,”
Sens. Actuators, A
0924-4247,
79
, pp.
83
89
.
11.
Majima
,
S.
,
Kodama
,
K.
, and
Hasegawa
,
T.
, 2001, “
Modeling of Shape Memory Alloy Actuator and Tracking Control System With the Model
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
1
), pp.
54
59
.
12.
Brown
,
W.
, 1966,
Magnetoelastic Interactions
,
Springer-Verlag
,
Berlin
.
13.
Jiles
,
D.
, 1991,
Introduction to Magnetism and Magnetic Materials
,
Chapman and Hall
,
New York
.
14.
Aharoni
,
A.
, 1996,
Introduction to the Theory of Ferromagnetism
,
Oxford Science
,
New York
.
15.
Armstrong
,
W.
, 2002, “
A Directional Magnetization Potential Based Model of Magnetoelastic Hysteresis
,”
J. Appl. Phys.
0021-8979,
91
(
4
), pp.
2202
2210
.
16.
Bertotti
,
G.
, 1998,
Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
,
Academic
,
San Diego, CA
.
17.
Galinaitis
,
W.
, and
Rogers
,
R.
, 1997, “
Compensation for Hysteresis Using Bivariate Preisach Models
,”
Proceedings of SPIE, Smart Structure and Materials 1997: Mathematics and Control in Smart Structures
, San Diego, CA.
18.
Smith
,
R.
,
Seelecke
,
S.
,
Dapino
,
M.
, and
Ounaies
,
Z.
, 2006, “
A Unified Framework for Modeling Hysteresis in Ferroic Materials
,”
J. Mech. Phys. Solids
0022-5096,
54
(
1
), pp.
46
85
.
19.
Smith
,
R.
,
Dapino
,
M.
, and
Seelecke
,
S.
, 2003, “
A Free Energy Model for Hysteresis in Magnetostrictive Transducers
,”
J. Appl. Phys.
0021-8979,
93
(
1
), pp.
458
466
.
20.
Smith
,
R.
,
Seelecke
,
S.
,
Ounaies
,
Z.
, and
Smith
,
J.
, 2003, “
A Free Energy Model for Hysteresis in Ferroelectric Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
11
), pp.
719
739
.
21.
Smith
,
R.
,
Hatch
,
A.
,
Mukherjee
,
B.
, and
Liu
,
S.
, 2005, “
A Homogenized Energy Model for Hysteresis in Ferroelectric Materials: General Density Formulations
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
9
), pp.
713
732
.
22.
Smith
,
R.
, 2005,
Smart Material Systems: Model Development
,
SIAM
,
Philadelphia, PA
.
23.
Smith
,
R.
,
Dapino
,
M.
,
Braun
,
T.
, and
Mortensen
,
A.
, 2006, “
A Homogenized Energy Framework for Ferromagnetic Hysteresis
,”
IEEE Trans. Magn.
0018-9464,
42
(
7
), pp.
1747
1769
.
24.
Smith
,
R.
, 1995, “
A Nonlinear Optimal Control Method for Magnetostrictive Actuators
,”
J. Intell. Mater. Syst. Struct.
,
9
(
6
), pp.
468
486
. 1045-389X
25.
Oates
,
W.
, and
Smith
,
R.
, 2008, “
Nonlinear Optimal Control Techniques for Vibration Attenuation Using Nonlinear Magnetostrictive Actuators
,”
J. Intell. Mater. Syst. Struct.
,
19
(
2
), pp.
193
209
. 1045-389X
26.
Braun
,
T.
,
Smith
,
R.
, and
Dapino
,
M.
, 2006, “
Experimental Validation of a Homogenized Energy Model for Magnetic After-Effects
,”
Appl. Phys. Lett.
0003-6951,
88
, pp.
122511
122513
.
27.
Smith
,
R.
, and
Dapino
,
M.
, 2006, “
A Homogenized Energy Model for the Direct Magnetomechanical Effect
,”
IEEE Trans. Magn.
0018-9464,
42
(
8
), pp.
1944
1957
.
28.
Dapino
,
M.
,
Smith
,
R.
, and
Flatau
,
A.
, 2000, “
A Structural Strain Model for Magnetostrictive Transducers
,”
IEEE Trans. Magn.
0018-9464,
36
(
3
), pp.
545
556
.
29.
Oates
,
W.
, and
Smith
,
R.
, 2008, “
Nonlinear Optimal Control Techniques for Vibration Attenuation Using Nonlinear Magnetostricive Actuators
,”
J. Intell. Mater. Syst. Struct.
,
19
(
2
), pp.
193
209
. 1045-389X
30.
Serway
,
R.
, 1990,
Physics for Scientists and Engineers
,
Saunders
,
Philadelphia
.
31.
Oates
,
W.
, and
Smith
,
R.
, 2007, “
Nonlinear Perturbation Control for Magnetic Transducers
,”
IEEE Conference on Decision and Control
.
32.
Bryson
,
A.
, and
Ho
,
Y. -C.
, 1969,
Applied Optimal Control
,
Blaisdell
,
Waltham, MA
.
33.
Lewis
,
F.
, and
Syrmos
,
V.
, 1995,
Optimal Control
,
Wiley
,
New York
.
You do not currently have access to this content.