This paper demonstrates the design of H loop-shaping controller for a linear time invariant (LTI) system with input saturation constraint. The design problem has been formulated in the four-block H synthesis framework, which is equivalent to normalized coprime factor robust stabilization problem. The shaped plant is represented as a polytopic linear parameter varying (LPV) system while saturation nonlinearity is considered. For a polytopic model, the LTI H loop-shaping controllers have been designed at each vertex of the polytope using linear matrix inequalities, and subsequently controllers are scheduled by adopting a certain interpolation procedure. The proposed controller ensures the stability and robust L2-performance of the closed-loop system due to vertex property of the polytopic LPV shaped plant. The effectiveness of the design method has been illustrated through a numerical example.

1.
El-Zobaidi
,
H. M.
, and
Jaimoukha
,
I. M.
, 1996, “
Robust Normalized LPV Gain Scheduling
,”
Proceedings of the Conference on Decision and Control
, Kobe, Japan, pp.
3982
3983
.
2.
Jung
,
M.
, and
Glover
,
K.
, 2006, “
Calibratable Linear Parameter-Varying Control of a Turbocharged Diesel Engine
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
1
), pp.
45
62
.
3.
Hyde
,
R. A.
, 1991, “
The Application of Robust Control to VSTOL Aircraft
,” Ph.D. thesis, Girton College, Cambridge University, Cambridge.
4.
Tan
,
W.
,
Marquez
,
H. J.
, and
Chen
,
T.
, 2002, “
Multivariable Robust Controller Design for Boiler System
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
5
), pp.
735
742
.
5.
McFarlane
,
D.
, and
Glover
,
K.
, 1992, “
A Loop Shaping Design Procedure Using H∞ Synthesis
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
6
), pp.
759
769
.
6.
Wu
,
F.
,
Grigoriadis
,
K. M.
, and
Packard
,
A.
, 2000, “
Anti-Windup Controller Design Using Linear Parameter Varying Control Methods
,”
Int. J. Control
0020-7179,
73
(
12
), pp.
1104
1114
.
7.
Reinelt
,
W.
, 2000, “
Robust Control of a Two-Mass-Spring System Subject to Its Input Constraints
,”
Proceedings of the American Control Conference
, Jun., pp.
1817
1921
.
8.
Apkarian
,
P.
,
Gahinet
,
P.
, and
Becker
,
G.
, 1995, “
Self-Scheduled H∞ Control of Linear Parameter Varying Systems: A Design Example
,”
Automatica
0005-1098,
31
(
9
), pp.
1251
1261
.
9.
Wu
,
F.
,
Yang
,
X. H.
,
Packard
,
A.
, and
Becker
,
G.
, 1996, “
Induced L2-Norm Control for LPV Systems With Bounded Parameter Variation Rates
,”
Int. J. Robust Nonlinear Control
1049-8923,
6
(
9–10
), pp.
983
998
.
10.
Cao
,
Y.
,
Lin
,
Z.
, and
Shamash
,
Y.
, 2002, “
Set Invariance Analysis and Gain-Scheduling Control for LPV Systems Subject to Actuator Saturation
,”
Syst. Control Lett.
0167-6911,
46
(
2
), pp.
137
151
.
11.
Apkarian
,
P.
, and
Adams
,
R. J.
, 1998, “
Advanced Gain-Scheduling Techniques for Uncertain Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
1
), pp.
21
32
.
12.
Nguyen
,
T.
, and
Jabbari
,
F.
, 2000, “
Output Feedback Controllers for Disturbance Attenuation With Actuator Amplitude and Rate Saturation
,”
Automatica
0005-1098,
36
(
9
), pp.
1339
1346
.
13.
Kapila
,
V.
, and
Grigoriadis
,
K. M.
, 2002,
Actuator Saturation Control
,
Dekker
,
New York
.
14.
Boyd
,
S.
,
Feron
,
E.
,
Ghaoui
,
L. E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM Frontier Series
,
Philadelphia, PA
.
15.
Apkarian
,
P.
, and
Gahinet
,
P.
, 1995, “
A Convex Characterization of Gain-Scheduled H∞ Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
5
), pp.
853
864
.
16.
Kapasouris
,
P.
,
Athans
,
M.
, and
Stein
,
G.
, 1998, “
Design of Feedback Control Systems for Stable Plants With Saturating Actuators
,”
Proceedings of the Conference on Decision and Control
, pp.
469
479
.
17.
Hu
,
T.
, and
Lin
,
Z.
, 2001,
Control Systems With Actuator Saturation: Analysis and Design
,
Birkhauser
,
Boston, MA
.
You do not currently have access to this content.