This work describes a new procedure for dynamic optimization of controllable linear time-invariant (LTI) systems. Unlike the traditional approach, which results in 2 n first-order differential equations, the method proposed here yields a set of m differential equations, whose highest order is twice the controllability index of the system p. This paper generalizes the approach presented in a previous work to any controllable LTI system.
Issue Section:
Research Papers
References
1.
Nihtila
, M. T.
, Tervo
, J.
, and Kokkonen
, P.
, 2004
, “Parametrization for Control of Linear PDE Systems
,” 1st International Symposium on Control, Communications and Signal Processing
, IEEE
, pp. 831
–834
.10.1109/ISCCSP.2004.12965742.
Solak
, M.
, 1981
, “A Differential Representation for Multivariable Linear Systems With Disturbances
,” IEEE Trans. Autom. Control
, 26
(4
), pp. 937
–939
.10.1109/TAC.1981.11027453.
Solak
, M.
, 1985
, “Differential Representations of Multivariable Linear Systems With Disturbances and Polynomial Matrix Equations PX + RY = W and PX + YN = V
,” IEEE Trans. Autom. Control
, 30
(7
), pp. 687
–690
.10.1109/TAC.1985.11040264.
Deshmukh
, S. M.
, Deshmukh
, S. S.
, and Kanphade
, R. D.
, 2010
, “Parameterization and Controllability of Linear Time-Invariant Systems
,” Int. J. Comput. Sci. Issues
, 7
(3
), pp. 39
–42
.5.
Sira-Ramirez
, H.
, and Agrawal
, S. K.
, 2004
, Differentially Flat Systems
(Control Engineering), Marcel Dekker, Inc.
, New York
.6.
Kirk
, D. E.
, 2004
, Optimal Control Theory: An Introduction
, Dover Publications
, New York
.7.
Anderson
, B. D. O.
, and Moore
, J. B.
, 1990
, Optimal Control: Linear Quadratic Methods
, Prentice-Hall, Inc.
, Upper Saddle River, NJ
.8.
Agrawal
, S. K.
, and Veeraklaew
, T.
, 1996
, “A Higher-Order Method for Dynamic Optimization of a Class of Linear Systems
,” ASME J. Dyn. Sys., Meas., Control
, 118
(4
), pp. 786
–791
.10.1115/1.28023589.
Xu
, X.
, and Agrawal
, S. K.
, 2000
, “Linear Time-Varying Dynamic Systems Optimization via Higher-Order Method: A Sub-Domain Approach
,” ASME J. Vib. Acoust.
, 122
, pp. 31
–35
.10.1115/1.56843410.
Neuman
, C.
, and Sen
, A.
, 1974
, “Weighted Residual Methods in Optimal Control
,” IEEE Trans. Autom. Control
, 19
(1
), pp. 67
–69
.10.1109/TAC.1974.110047011.
Chen
, C.-T.
, 1998
, Linear System Theory and Design
(Electrical and Computer Engineering), 3rd ed., Oxford University Press
, New York
.12.
Brebbia
, C. A.
, 1984
, The Boundary Element Method for Engineers
, Pentech Press
, London
.13.
Boresi
, A. P.
, Saigal
, S.
, and Chong
, K. P.
, 2002
, Approximate Solution Methods in Engineering Mechanics
, John Wiley and Sons, Inc.
, New York
.Copyright © 2013 by ASME
You do not currently have access to this content.