This work describes a new procedure for dynamic optimization of controllable linear time-invariant (LTI) systems. Unlike the traditional approach, which results in 2 n first-order differential equations, the method proposed here yields a set of m differential equations, whose highest order is twice the controllability index of the system p. This paper generalizes the approach presented in a previous work to any controllable LTI system.

References

1.
Nihtila
,
M. T.
,
Tervo
,
J.
, and
Kokkonen
,
P.
,
2004
, “
Parametrization for Control of Linear PDE Systems
,”
1st International Symposium on Control, Communications and Signal Processing
,
IEEE
, pp.
831
834
.10.1109/ISCCSP.2004.1296574
2.
Solak
,
M.
,
1981
, “
A Differential Representation for Multivariable Linear Systems With Disturbances
,”
IEEE Trans. Autom. Control
,
26
(
4
), pp.
937
939
.10.1109/TAC.1981.1102745
3.
Solak
,
M.
,
1985
, “
Differential Representations of Multivariable Linear Systems With Disturbances and Polynomial Matrix Equations PX + RY = W and PX + YN = V
,”
IEEE Trans. Autom. Control
,
30
(
7
), pp.
687
690
.10.1109/TAC.1985.1104026
4.
Deshmukh
,
S. M.
,
Deshmukh
,
S. S.
, and
Kanphade
,
R. D.
,
2010
, “
Parameterization and Controllability of Linear Time-Invariant Systems
,”
Int. J. Comput. Sci. Issues
,
7
(
3
), pp.
39
42
.
5.
Sira-Ramirez
,
H.
, and
Agrawal
,
S. K.
,
2004
,
Differentially Flat Systems
(
Control Engineering), Marcel Dekker, Inc.
,
New York
.
6.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover Publications
,
New York
.
7.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1990
,
Optimal Control: Linear Quadratic Methods
,
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
.
8.
Agrawal
,
S. K.
, and
Veeraklaew
,
T.
,
1996
, “
A Higher-Order Method for Dynamic Optimization of a Class of Linear Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
118
(
4
), pp.
786
791
.10.1115/1.2802358
9.
Xu
,
X.
, and
Agrawal
,
S. K.
,
2000
, “
Linear Time-Varying Dynamic Systems Optimization via Higher-Order Method: A Sub-Domain Approach
,”
ASME J. Vib. Acoust.
,
122
, pp.
31
35
.10.1115/1.568434
10.
Neuman
,
C.
, and
Sen
,
A.
,
1974
, “
Weighted Residual Methods in Optimal Control
,”
IEEE Trans. Autom. Control
,
19
(
1
), pp.
67
69
.10.1109/TAC.1974.1100470
11.
Chen
,
C.-T.
,
1998
,
Linear System Theory and Design
(Electrical and Computer Engineering), 3rd ed., Oxford University Press
,
New York
.
12.
Brebbia
,
C. A.
,
1984
,
The Boundary Element Method for Engineers
,
Pentech Press
,
London
.
13.
Boresi
,
A. P.
,
Saigal
,
S.
, and
Chong
,
K. P.
,
2002
,
Approximate Solution Methods in Engineering Mechanics
,
John Wiley and Sons, Inc.
,
New York
.
You do not currently have access to this content.