Most manipulator motion controllers require joint velocity feedback. Whenever joint velocities are not measurable, they are estimated from the joint positions. However, velocity estimates tend to be inaccurate under low-speed motion or low sensor resolution conditions. Moreover, velocity estimators may either be susceptible to model uncertainties or introduce additional dynamics (e.g., phase lag) to the control loop. Consequently, direct substitution of velocity estimates into the controller results in the deterioration of the control performance and robustness margin. Therefore, this paper proposes a robust position-feedback motion controller which gets rid of the problems of uncompensated dynamics and model uncertainties introduced by velocity estimators. Furthermore, a globally asymptotically stable system, which is robust with respective to model parameter variations, is guaranteed. Theoretical analysis and experimental verifications are carried out. The results demonstrate that the proposed controller is robust and outperforms the conventional computed torque plus proportional integral differential (PID) controller.

References

1.
Abdallah
,
C.
,
Dawson
,
D. M.
,
Dorato
,
P.
, and
Jamshidi
,
M.
,
1991
, “
Survey of Robust Control for Rigid Robots
,”
IEEE Control Syst. Mag.
,
11
(
2
), pp.
24
30
.10.1109/37.67672
2.
Sage
,
H. G.
,
Mathelin
,
M. F. D.
, and
Ostertag
,
E.
,
1999
, “
Robust Control of Robot Manipulators: A Survey
,”
Int. J. Control
,
72
(
16
), pp.
1498
1522
.10.1080/002071799220137
3.
Kreutz
,
K.
,
1989
, “
On Manipulator Control by Exact Linearization
,”
IEEE Trans. Autom. Control
,
34
(
7
), pp.
763
767
.10.1109/9.29408
4.
Islam
,
S.
, and
Liu
,
P. X.
,
2011
, “
PD Output Feedback Control Design for Industrial Robotic Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
187
197
.10.1109/TMECH.2009.2038374
5.
Moosavian
,
S. A. A.
, and
Papadopoulos
,
E.
,
2007
, “
Modified Transpose Jacobian Control of Robotic Systems
,”
Automatica
,
43
(
7
), pp.
1226
1233
.10.1016/j.automatica.2006.12.029
6.
Bevly
,
D.
,
Dubowsky
,
S.
, and
Mavroidis
,
C.
,
2000
, “
A Simplified Cartesian-Computed Torque Controller for Highly Geared Systems and Its Application to an Experimental Climbing Robot
,”
ASME J. Dyn. Sys., Meas., Control
,
122
(
1
), pp.
27
32
.10.1115/1.482425
7.
Kelly
,
R.
, and
Moreno
,
J.
,
2005
, “
Manipulator Motion Control in Operational Space Using Joint Velocity Inner Loops
,”
Automatica
,
41
(
8
), pp.
1423
1432
.10.1016/j.automatica.2005.03.008
8.
Spong
,
M. W.
,
1992
, “
On the Robust Control of Robot Manipulators
,”
IEEE Trans. Autom. Control
,
37
(
11
), pp.
1782
1786
.10.1109/9.173151
9.
Qu
,
Z.
,
1992
, “
Robust Control of a Class of Nonlinear Uncertain Systems
,”
IEEE Trans. Autom. Control
,
37
(
9
), pp.
1437
1442
.10.1109/9.159588
10.
Craig
,
J. J.
,
Hsu
,
P.
, and
Sastry
,
S. S.
,
1987
, “
Adaptive Control of Mechanical Manipulators
,”
Int. J. Robot. Res.
,
6
(
2
), pp.
16
28
.10.1177/027836498700600202
11.
Ortega
,
R.
, and
Spong
,
M. W.
,
1989
, “
Adaptive Motion Control of Rigid Robots: A Tutorial
,”
Automatica
,
25
(
6
), pp.
877
888
.10.1016/0005-1098(89)90054-X
12.
Spong
,
M. W.
, and
Ortega
,
R.
,
1990
, “
On Adaptive Inverse Dynamics Control of Rigid Robots
,”
IEEE Trans. Autom. Control
,
35
(
1
), pp.
92
93
.10.1109/9.45152
13.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1988
, “
Adaptive Manipulator Control: A Case Study
,”
IEEE Trans. Autom. Control
,
33
(
11
), pp.
995
1003
.10.1109/9.14411
14.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Robot. Res.
,
6
(
3
), pp.
49
59
.10.1177/027836498700600303
15.
Chiu
,
C.-S.
,
Lian
,
K.-Y.
, and
Wu
,
T.-C.
,
2004
, “
Robust Adaptive Motion/Force Tracking Control Design for Uncertain Constrained Robot Manipulators
,”
Automatica
,
40
(
12
), pp.
2111
2119
.10.1016/j.automatica.2004.06.017
16.
Slotine
,
J. J. E.
, and
Sastry
,
S. S.
,
1983
, “
Tracking Control of Non-Linear Systems Using Sliding Surfaces With Application to Robot Manipulators
,”
Int. J. Control
,
38
(
2
), pp.
465
492
.10.1080/00207178308933088
17.
Yeung
,
K. S.
, and
Chen
,
Y. P.
,
1988
, “
A New Controller Design for Manipulators Using the Theory of Variable Structure Systems
,”
IEEE Trans. Autom. Control
,
33
(
2
), pp.
200
206
.10.1109/9.391
18.
Chen
,
Y.-F.
,
Mita
,
T.
, and
Wakui
,
S.
,
1990
, “
A New and Simple Algorithm for Sliding Mode Trajectory Control of the Robot Arm
,”
IEEE Trans. Autom. Control
,
35
(
7
), pp.
828
829
.10.1109/9.57022
19.
Zhihong
,
M.
,
Paplinski
,
A. P.
, and
Wu
,
H. R.
,
1994
, “
A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2464
2469
.10.1109/9.362847
20.
Moura
,
J. T.
,
Roy
,
R. G.
, and
Olgac
,
N.
,
1997
, “
Frequency-Shaped Sliding Modes: Analysis and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
5
(
4
), pp.
394
401
.10.1109/87.595920
21.
Yu
,
W.-S.
, and
Chen
,
Y.-H.
,
2005
, “
Decoupled Variable Structure Control Design for Trajectory Tracking on Mechatronic Arms
,”
IEEE Trans. Control Syst. Technol.
,
13
(
5
), pp.
798
806
.10.1109/TCST.2005.852112
22.
Kelly
,
R.
,
1993
, “
A Simple Set-Point Robot Controller by Using Only Position Measurements
,”
IFAC 12th Triennial World Congress
,
Sydney, Australia
, pp.
527
530
.
23.
Berghuis
,
H.
, and
Nijmeijer
,
H.
,
1993
, “
Global Regulation of Robots Using Only Position Measurements
,”
Syst. Control Lett.
,
21
(
4
), pp.
289
293
.10.1016/0167-6911(93)90071-D
24.
Tayebi
,
A.
, and
Islam
,
S.
,
2006
, “
Adaptive Iterative Learning Control for Robot Manipulators: Experimental Results
,”
Control Eng. Pract.
,
14
(
7
), pp.
843
851
.10.1016/j.conengprac.2005.04.013
25.
Namvar
,
M.
,
2009
, “
A Class of Globally Convergent Velocity Observers for Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1956
1961
.10.1109/TAC.2009.2023960
26.
Jeon
,
S.
,
Tomizuka
,
M.
, and
Katou
,
T.
,
2009
, “
Kinematic Kalman Filter (KKF) for Robot End-Effector Sensing
,”
ASME J. Dyn. Sys., Meas., Control
,
131
(
2
), p.
021010
.10.1115/1.3023124
27.
Zhu
,
W.-H.
, and
Lamarche
,
T.
,
2007
, “
Velocity Estimation by Using Position and Acceleration Sensors
,”
IEEE Trans. Ind. Electron.
,
54
(
5
), pp.
2706
2715
.10.1109/TIE.2007.899936
28.
Su
,
Y. X.
,
Zheng
,
C. H.
,
Mueller
,
P. C.
, and
Duan
,
B. Y.
,
2006
, “
A Simple Improved Velocity Estimation for Low-Speed Regions Based on Position Measurements Only
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
937
942
.10.1109/TCST.2006.876917
29.
Wit
,
C. C. D.
, and
Fixot
,
N.
,
1991
, “
Robot Control via Robust Estimated State Feedback
,”
IEEE Trans. Autom. Control
,
36
(
12
), pp.
1497
1501
.10.1109/9.106170
30.
Martinez-Guerra
,
R.
,
Poznyak
,
A.
,
Gortcheva
,
E.
, and
Leon
,
V. D. D.
,
2000
, “
Robot Angular Link Velocity Estimation in the Presence of High-Level Mixed Uncertainties
,”
IEEE Proc.: Control Theory Appl.
,
147
(
5
), pp.
515
522
.10.1049/ip-cta:20000651
31.
Arteaga
,
M. A.
,
2003
, “
Robot Control and Parameter Estimation With Only Joint Position Measurements
,”
Automatica
,
39
(
1
), pp.
67
73
.10.1016/S0005-1098(02)00166-8
32.
Kaneko
,
K.
, and
Horowitz
,
R.
,
1997
, “
Repetitive and Adaptive Control of Robot Manipulators With Velocity Estimation
,”
IEEE Trans. Robot. Autom.
,
13
(
2
), pp.
204
217
.10.1109/70.563643
33.
Zhu
,
W.-H.
,
Chen
,
H.-T.
, and
Zhang
,
Z.-J.
,
1992
, “
A Variable Structure Robot Control Algorithm With an Observer
,”
IEEE Trans. Robot. Autom.
,
8
(
4
), pp.
486
492
.10.1109/70.149947
34.
Kelly
,
R.
,
Santibanez
,
V.
, and
Loria
,
A.
,
2005
,
Control of Robot Manipulators in Joint Space
,
Springer
,
New York
.
35.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State-Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
(
8
), pp.
831
847
.10.1109/9.29425
36.
Yuz
,
J. I.
, and
Salgado
,
M. E.
,
2003
, “
From Classical to State-Feedback-Based Controllers
,”
IEEE Control Syst. Mag.
,
23
(
4
), pp.
58
67
.10.1109/MCS.2003.1213604
37.
Khargonekar
,
P. P.
,
Petersen
,
I. R.
, and
Rotea
,
M. A.
,
1988
, “
H∞-Optimal Control With State-Feedback
,”
IEEE Trans. Autom. Control
,
33
(
8
), pp.
786
788
.10.1109/9.1301
38.
Doyle
,
J. C.
,
1978
, “
Guaranteed Margins for LQG Regulators
,”
IEEE Trans. Autom. Control
,
23
(
4
), pp.
756
757
.10.1109/TAC.1978.1101812
39.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1990
,
Optimal Control: Linear Quadratic Methods
,
Prentice Hall
,
Englewood Cliffs, NJ
.
40.
Chilali
,
M.
, and
Gahinet
,
P.
,
1996
, “
H∞ Design With Pole Placement Constraints: An LMI
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
358
367
.10.1109/9.486637
41.
Khargonekar
,
P. P.
, and
Rotea
,
M. A.
,
1991
, “
Mixed H2/H∞ Control: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
,
36
(
7
), pp.
824
837
.10.1109/9.85062
42.
Leitmann
,
G.
,
1979
, “
Guaranteed Asymptotic Stability for Some Linear Systems With Bounded Uncertainties
,”
ASME J. Dyn. Sys., Meas., Control
,
101
(
3
), pp.
212
216
.10.1115/1.3426427
43.
Ioannou
,
P. A.
, and
Sun
,
J.
,
1996
,
Robust Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs
, NJ.
44.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
,
1990
,
Digital Control of Dynamic Systems
,
Addison-Wesley
,
Reading, MA
.
45.
Desoer
,
C. A.
, and
Vidyasagar
,
M.
,
1975
,
Feedback Systems: Input-Output Properties
,
Academic
,
New York
.
46.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall PTR
,
Englewood Cliffs, NJ
.
47.
Padthe
,
A. K.
,
Drincic
,
B.
,
Oh
,
J.
,
Rizos
,
D. D.
,
Fassois
,
S. D.
, and
Bernstein
,
D. S.
,
2008
, “
Duhem Modeling of Friction-Induced Hysteresis
,”
IEEE Control Syst. Mag.
,
28
(
5
), pp.
90
107
.10.1109/MCS.2008.927331
You do not currently have access to this content.