This brief paper proposes a dynamic data-driven method for stability monitoring of rotorcraft systems, where the underlying concept is built upon the principles of symbolic dynamics. The stability monitoring algorithm involves wavelet-packet-based preprocessing to remove spurious disturbances and to improve the signal-to-noise ratio (SNR) of the sensor time series. A quantified measure, called Instability Measure, is constructed from the processed time series data to obtain an estimate of the relative instability of the dynamic modes of interest on the rotorcraft system. The efficacy of the proposed method has been established with numerical simulations where correlations between the instability measure and the damping parameter(s) of selected dynamic mode(s) of the rotor blade are established.

References

1.
Friedmann
,
P.
, and
Tong
,
P.
,
1972
, “
Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight
,” Aeroelastic and Structures Research Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139.
2.
Kunz
,
D. L.
,
2002
, “
Nonlinear Analysis of Helicopter Ground Resonance
,”
Nonlinear Anal.: Real World Appl.
,
3
(
3
), pp.
383
395
.10.1016/S1468-1218(01)00037-2
3.
Johnson
,
W.
,
2003
, “
A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1: Analysis Development
,” NASA Ames Research Center, Moffet Field, CA.
4.
Crimi
,
P.
,
1973
, “
Analysis of Stall Flutter of a Helicopter Rotor Blade
,” National Aeronautics and Space Administration, Washington, D.C. 20546.
5.
Fletcher
,
J. W.
,
Lusardi
,
J.
,
Mansur
,
M. H.
,
Moralez
,
E.
,
Robinson
,
D. E.
,
Arterburn
,
D. R.
,
Cherepinsky
,
I.
,
Driscoll
,
J.
,
Morse
,
C. S.
, and
Kalinowski
,
K.F.
,
2008
, “
UH-60M Upgrade Fly-By-Wire Flight Control Risk Reduction Using the RASCAL JUH-60A in-Flight Simulator
,”
Proceedings of the American Helicopter Society 64th Annual Forum
, Montreal, Canada.
6.
Lusardi
,
J. A.
,
2010
, “
Development of External Load Handling Qualities Criteria for Rotorcraft
,”
Proceedings of the American Helicopter Society 66th Annual Forum
, Phoenix, AZ.
7.
Andrews
,
J.
, and
Wong
,
J.
,
2012
, “
Real-Time Extraction of Rotor Modal Information for Stability Monitoring and Correlation
,”
Proceedings of the American Helicopter Society Future Vertical Lift Aircraft Design Conference
, San Francisco, CA.
8.
van Overschee
,
P.
, and
Moor
,
B. D.
,
1996
,
Subspace Identification for Linear Systems: Theory, Implementation and Applications
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
9.
Goodwin
,
G.
,
Evans
,
R.
,
Leal
,
R.
, and
Feik
,
R.
,
1986
, “
Sinusoidal Disturbance Rejection With Application to Helicopter Flight Data Estimation
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
34
(
3
), pp.
479
484
.10.1109/TASSP.1986.1164834
10.
Coifman
,
R. R.
,
Meyer
,
Y.
, and
Wickerhauser
,
M. V.
,
1992
, “
Wavelet Analysis and Signal Processing
,”
Wavelets and Their Applications
,
Ruskai
,
M. B.
,
Beylkin
,
G.
,
Coifman
,
R. R.
,
Daubechies
,
I.
,
Mallat, Meyer
,
Y.
, and
Raphael
,
L.
, eds.
Jones and Bartlett
, Boston, MA, pp.
153
178
.
11.
Sonti
,
S.
,
Keller
,
E.
,
Horn
,
J.
, and
Ray
,
A.
,
2013
, “
Identification of Instabilities in Rotorcraft Systems
,”
Proceedings of Dynamic Systems and Control Conference
, Stanford, CA.
12.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
13.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis Via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
14.
Gupta
,
S.
,
Ray
,
A.
, and
Keller
E.
,
2007
, “
Symbolic Time Series Analysis of Ultrasonic Data for Early Detection of Fatigue Damage
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
866
884
.10.1016/j.ymssp.2005.08.022
15.
Chakraborty
,
S.
,
Keller
,
E.
,
Talley
,
J.
,
Srivastav
,
A.
,
Ray
,
A.
, and
Kim
,
S.
,
2009
, “
Void Fraction Measurement in Two-Phase Processes Via Symbolic Dynamic Filtering of Ultrasonic Signals
,”
Meas. Sci. Technol.
,
20
(
2
), p.
023001
.10.1088/0957-0233/20/2/023001
16.
Mallapragada
,
G.
,
Ray
,
A.
, and
Jin
,
X.
,
2012
, “
Symbolic Dynamic Filtering and Language Measure for Behavior Identification of Mobile Robots
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
42
(
3
), pp.
647
659
.10.1109/TSMCB.2011.2172419
17.
Daw
,
C. S.
,
Finney
,
C. E. A.
, and
Tracy
,
E. R.
,
2003
, “
A Review of Symbolic Analysis of Experimental Data
,”
Rev. Sci. Instrum.
,
74
(
2
), pp.
915
930
.10.1063/1.1531823
18.
Mallat
,
S.
,
2009
,
A Wavelet Tour of Signal Processing: The Sparse Way
, 3rd ed.,
Academic
,
Amsterdam, The Netherlands
.
19.
Zhao
,
J.
,
2011
,
Wavelet Toolbox
,
Mathworks Inc.
,
Natick, MA
.
20.
Xu
,
L.
,
2005
, “
Cancellation of Harmonic Interference by Baseline Shifting of Wavelet Packet Decomposition Coefficients
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
53
(
1
), pp.
222
230
.10.1109/TSP.2004.838954
21.
Adenis
,
P.
,
Wen
,
Y.
, and
Ray
,
A.
,
2012
, “
An Inner Product Space on Irreducible and Synchronizable Probabilistic Finite State Automata
,”
Math. Control, Signals, Syst.
,
23
(
4
), pp.
281
310
.10.1007/s00498-012-0075-1
22.
Adenis
,
P.
,
Mukherjee
,
K.
, and
Ray
,
A.
,
2011
, “
State Splitting and State Merging in Probabilistic Finite State Automata
,”
Proceedings of the American Control Conference
, San Francisco, CA.
23.
Structural Rotorcraft Comprehensive Analysis System (RCAS) Theory Manual, Version 2.0., 2003, US Army Aviation and Missile Command, Moffett Field, CA.
24.
Singh
,
D.
,
Gupta
,
S.
, and
Ray
,
A.
,
2012
, “
Online Recursive Estimation of Remaining Life Using Ultrasonic Measurements
,”
Struct. Health Monit.
,
11
(
4
), pp.
413
421
.10.1177/1475921711432003
You do not currently have access to this content.