In this paper, we present a novel model predictive control (MPC) scheme that incorporates stability information derived from a control Lyapunov function (CLF) to dynamically prune suboptimal sequences from the search space and decrease the computational burden placed on the controller. The CLF used for pruning is then incorporated into a cost function that penalizes energy in the error system as well as energy loss due to switching. Despite the very small control periods allowed due dynamic pruning, experimental results are given, showing the resulting controller generates low switching frequencies and low total harmonic distortion.

References

1.
Rathore
,
A.
,
Holtz
,
J.
, and
Boller
,
T.
,
2010
, “
Synchronous Optimal Pulsewidth Modulation for Low-Switching-Frequency Control of Medium-Voltage Multilevel Inverters
,”
IEEE Trans. Ind. Electron.
,
57
(
7
), pp.
2374
2381
.10.1109/TIE.2010.2047824
2.
Vargas-Merino
,
F.
,
Meco-Gutierrez
,
M.
,
Heredia-Larrubia
,
J.
, and
Ruiz-Gonzalez
,
A.
,
2009
, “
Low Switching PWM Strategy Using a Carrier Wave Regulated by the Slope of a Trapezoidal Modulator Wave
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
2270
2274
.10.1109/TIE.2009.2014901
3.
Trzynadlowski
,
A.
,
Kirlin
,
R.
, and
Legowski
,
S.
,
1997
, “
Space Vector PWM Technique With Minimum Switching Losses and a Variable Pulse Rate [for VSI]
,”
IEEE Trans. Ind. Electron.
,
44
(
2
), pp.
173
181
.10.1109/41.564155
4.
Borisov
,
K.
,
Calvert
,
T.
,
Kleppe
,
J.
,
Martin
,
E.
, and
Trzynadlowski
,
A.
,
2006
, “
Experimental Investigation of a Naval Propulsion Drive Model With the PWM-Based Attenuation of the Acoustic and Electromagnetic Noise
,”
IEEE Trans. Ind. Electron.
,
53
(
2
), pp.
450
457
.10.1109/TIE.2006.870873
5.
Lim
,
Y.-C.
,
Wi
,
S.-O.
,
Kim
,
J.-N.
, and
Jung
,
Y.-G.
,
2010
, “
A Pseudorandom Carrier Modulation Scheme
,”
IEEE Trans. Power Electron.
,
25
(
4
), pp.
797
805
.10.1109/TPEL.2009.2035699
6.
Kirlin
,
R.
,
Lascu
,
C.
, and
Trzynadlowski
,
A.
,
2011
, “
Shaping the Noise Spectrum in Power Electronic Converters
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2780
2788
.10.1109/TIE.2010.2076417
7.
Basu
,
K.
,
Prasad
,
J. S. S.
,
Narayanan
,
G.
,
Krishnamurthy
,
H. K.
, and
Ayyanar
,
R.
,
2010
, “
Reduction of Torque Ripple in Induction Motor Drives Using an Advanced Hybrid PWM Technique
,”
IEEE Trans. Ind. Electron.
,
57
(
6
), pp.
2085
2091
.10.1109/TIE.2009.2034183
8.
Shyu
,
K.-K.
,
Lin
,
J.-K.
,
Pham
,
V.-T.
,
Yang
,
M.-J.
, and
Wang
,
T.-W.
,
2010
, “
Global Minimum Torque Ripple Design for Direct Torque Control of Induction Motor Drives
,”
IEEE Trans. Ind. Electron.
,
57
(
9
), pp.
3148
3156
.10.1109/TIE.2009.2038401
9.
Vafakhah
,
B.
,
Salmon
,
J.
, and
Knight
,
A.
,
2010
, “
A New Space-Vector PWM With Optimal Switching Selection for Multilevel Coupled Inductor Inverters
,”
IEEE Trans. Ind. Electron.
,
57
(
7
), pp.
2354
2364
.10.1109/TIE.2009.2038939
10.
Aghili
,
F.
,
2011
, “
Ripple Suppression of Bldc Motors With Finite Driver/Amplifier Bandwidth at High Velocity
,”
IEEE Trans. Control Syst. Technol.
,
19
(
2
), pp.
391
397
.10.1109/TCST.2010.2045502
11.
ABB, 2011, “Technical Guide No. 1 Direct Torque Control - The Worlds Most Advanced AC Drive Technology Rev. C,” ABB, p. 18.
12.
Zhang
,
Y.
,
Zhu
,
J.
,
Xu
,
W.
, and
Guo
,
Y.
,
2011
, “
A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2848
2859
.10.1109/TIE.2010.2076413
13.
Zhang
,
Y.
, and
Zhu
,
J.
,
2011
, “
A Novel Duty Cycle Control Strategy to Reduce Both Torque and Flux Ripples for DTC of Permanent Magnet Synchronous Motor Drives With Switching Frequency Reduction
,”
IEEE Trans. Power Electron.
,
26
(
10
), pp.
3055
3067
.10.1109/TPEL.2011.2129577
14.
Lascu
,
C.
,
Boldea
,
I.
, and
Blaabjerg
,
F.
,
2012
, “
Direct Torque Control Via Feedback Linearization for Permanent Magnet Synchronous Motor Drives
,”
2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)
, pp.
338
343
.
15.
Gao
,
L.
,
Fletcher
,
J.
, and
Zheng
,
L.
,
2011
, “
Low-Speed Control Improvements for a Two-Level Five-Phase Inverter-Fed Induction Machine Using Classic Direct Torque Control
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2744
2754
.10.1109/TIE.2010.2070775
16.
Zhang
,
Y.
,
Zhu
,
J.
,
Guo
,
Y.
,
Xu
,
W.
,
Wang
,
Y.
, and
Zhao
,
Z.
,
2009
, “
A Sensorless Dtc Strategy of Induction Motor Fed by Three-Level Inverter Based on Discrete Space Vector Modulation
,”
Power Engineering Conference
,
Australasian Universities
, AUPEC 2009, pp.
1
6
.
17.
Taheri
,
A.
,
Rahmati
,
A.
, and
Kaboli
,
S.
,
2012
, “
Efficiency Improvement in DTC of Six-Phase Induction Machine by Adaptive Gradient Descent of Flux
,”
IEEE Trans. Power Electron.
,
27
(
3
), pp.
1552
1562
.10.1109/TPEL.2011.2163420
18.
Zheng
,
L.
,
Fletcher
,
J.
,
Williams
,
B.
, and
He
,
X.
,
2011
, “
A Novel Direct Torque Control Scheme for a Sensorless Five-Phase Induction Motor Drive
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
503
513
.10.1109/TIE.2010.2047830
19.
Geyer
,
T.
,
2011
, “
Computationally Efficient Model Predictive Direct Torque Control
,”
IEEE Trans. Power Electron.
,
26
(
10
), pp.
2804
2816
.10.1109/TPEL.2011.2121921
20.
Cortes
,
P.
,
Kazmierkowski
,
M.
,
Kennel
,
R.
,
Quevedo
,
D.
, and
Rodriguez
,
J.
,
2008
, “
Predictive Control in Power Electronics and Drives
,”
IEEE Trans. Ind. Electron.
,
55
(
12
), pp.
4312
4324
.10.1109/TIE.2008.2007480
21.
Kouro
,
S.
,
Cortes
,
P.
,
Vargas
,
R.
,
Ammann
,
U.
, and
Rodriguez
,
J.
,
2009
, “
Model Predictive Control-A Simple and Powerful Method to Control Power Converters
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
1826
1838
.10.1109/TIE.2008.2008349
22.
Bemporad
,
A.
,
Borrelli
,
F.
, and
Morari
,
M.
,
2002
, “
Model Predictive Control Based on Linear Programming - the Explicit Solution
,”
IEEE Trans. Autom. Control
,
47
(
12
), pp.
1974
1985
.10.1109/TAC.2002.805688
23.
Mariethoz
,
S.
,
Domahidi
,
A.
, and
Morari
,
M.
,
2012
, “
High-Bandwidth Explicit Model Predictive Control of Electrical Drives
,”
IEEE Trans. Ind. Appl.
,
48
(
99
), pp.
1980
1992
.
24.
Beccuti
,
A.
,
Mariethoz
,
S.
,
Cliquennois
,
S.
,
Wang
,
S.
, and
Morari
,
M.
,
2009
, “
Explicit Model Predictive Control of DC x2013; DC Switched-Mode Power Supplies With Extended Kalman Filtering
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
1864
1874
.10.1109/TIE.2009.2015748
25.
Almer
,
S.
,
Mariethoz
,
S.
, and
Morari
,
M.
,
2013
, “
Sampled Data Model Predictive Control of a Voltage Source Inverter for Reduced Harmonic Distortion
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1907
1975
.10.1109/TCST.2012.2214777
26.
Zeilinger
,
M.
,
Jones
,
C.
, and
Morari
,
M.
,
2011
, “
Real-Time Suboptimal Model Predictive Control Using a Combination of Explicit MPC and Online Optimization
,”
IEEE Trans. Autom. Control
,
56
(
7
), pp.
1524
1534
.10.1109/TAC.2011.2108450
27.
Cortes
,
P.
,
Vattuone
,
L.
, and
Rodriguez
,
J.
,
2011
, “
Predictive Current Control With Reduction of Switching Frequency for Three Phase Voltage Source Inverters
,” 2011
IEEE International Symposium on Industrial Electronics (ISIE)
, pp.
1817
1822
.
28.
Geyer
,
T.
,
Papafotiou
,
G.
, and
Morari
,
M.
,
2009
, “
Model Predictive Direct Torque Control x2014; Part I: Concept, Algorithm, and Analysis
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
1894
1905
.10.1109/TIE.2008.2007030
29.
Papafotiou
,
G.
,
Kley
,
J.
,
Papadopoulos
,
K.
,
Bohren
,
P.
, and
Morari
,
M.
,
2009
, “
Model Predictive Direct Torque Control x2014; Part ii: Implementation and Experimental Evaluation
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
1906
1915
.10.1109/TIE.2008.2007032
30.
Preindl
,
M.
,
Schaltz
,
E.
, and
Thogersen
,
P.
,
2011
, “
Switching Frequency Reduction Using Model Predictive Direct Current Control for High-Power Voltage Source Inverters
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2826
2835
.10.1109/TIE.2010.2072894
31.
Martinez
,
J.
,
Kennel
,
R.
, and
Geyer
,
T.
,
2010
, “
Model Predictive Direct Current Control
,”
2010 IEEE International Conference on Industrial Technology (ICIT)
, pp.
1808
1813
.
32.
Mariethoz
,
S.
,
Domahidi
,
A.
, and
Morari
,
M.
,
2009
, “
A Model Predictive Control Scheme With Torque Ripple Mitigation for Permanent Magnet Motors
,”
Industrial Electronics, 2009 IECON ’09. 35th Annual Conference of IEEE
, pp.
985
990
.
33.
Geyer
,
T.
,
2011
, “
A Comparison of Control and Modulation Schemes for Medium-Voltage Drives: Emerging Predictive Control Concepts Versus PWM-Based Schemes
,”
IEEE Trans. Ind. Appl.
,
47
(
3
), pp.
1380
1389
.10.1109/TIA.2011.2127433
34.
Barrero
,
F.
,
Prieto
,
J.
,
Levi
,
E.
,
Gregor
,
R.
,
Toral
,
S.
,
Duran
,
M.
, and
Jones
,
M.
,
2011
, “
An Enhanced Predictive Current Control Method for Asymmetrical Six-Phase Motor Drives
,”
IEEE Trans. Ind. Electron.
,
58
(
8
), pp.
3242
3252
.10.1109/TIE.2010.2089943
35.
Romero
,
M.
,
Seron
,
M.
, and
Goodwin
,
G.
,
2011
, “
A Combined Model Predictive Control/Space Vector Modulation (MPC-SVM) Strategy for Direct Torque and Flux Control of Induction Motors
,”
IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society
, pp.
1674
1679
.
36.
Barrero
,
F.
,
Arahal
,
M.
,
Gregor
,
R.
,
Toral
,
S.
, and
Duran
,
M.
,
2009
, “
A Proof of Concept Study of Predictive Current Control for VSI-Driven Asymmetrical Dual Three-Phase AC Machines
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
1937
1954
.10.1109/TIE.2008.2011604
37.
Geyer
,
T.
,
2011
, “
Model Predictive Direct Torque Control: Derivation and Analysis of the Explicit Control Law
,”
Energy Conversion Congress and Exposition (ECCE), IEEE
, pp.
355
362
.10.1109/ECCE.2011.6063791
38.
Prior
,
G.
, and
Krstic
,
M.
,
2013
, “
Quantized-Input Control Lyapunov Approach for Permanent Magnet Synchronous Motor Drives
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1784
1794
.10.1109/TCST.2012.2212246
39.
Goodwin
,
G.
,
Mayne
,
D.
,
Chen
,
T.
,
Coates
,
C.
,
Mirzaeva
,
G.
, and
Quevedo
,
D.
,
2010
, “
Opportunities and Challenges in the Application of Advanced Control to Power Electronics and Drives
,”
2010 IEEE International Conference on Industrial Technology (ICIT)
, pp.
27
39
.
40.
Muller
,
C.
,
Quevedo
,
D.
, and
Goodwin
,
G.
,
2011
, “
How Good is Quantized Model Predictive Control With Horizon One?
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2623
2638
.10.1109/TAC.2011.2122610
You do not currently have access to this content.