In this paper, we present a novel model predictive control (MPC) scheme that incorporates stability information derived from a control Lyapunov function (CLF) to dynamically prune suboptimal sequences from the search space and decrease the computational burden placed on the controller. The CLF used for pruning is then incorporated into a cost function that penalizes energy in the error system as well as energy loss due to switching. Despite the very small control periods allowed due dynamic pruning, experimental results are given, showing the resulting controller generates low switching frequencies and low total harmonic distortion.
Issue Section:
Research Papers
References
1.
Rathore
, A.
, Holtz
, J.
, and Boller
, T.
, 2010
, “Synchronous Optimal Pulsewidth Modulation for Low-Switching-Frequency Control of Medium-Voltage Multilevel Inverters
,” IEEE Trans. Ind. Electron.
, 57
(7
), pp. 2374
–2381
.10.1109/TIE.2010.20478242.
Vargas-Merino
, F.
, Meco-Gutierrez
, M.
, Heredia-Larrubia
, J.
, and Ruiz-Gonzalez
, A.
, 2009
, “Low Switching PWM Strategy Using a Carrier Wave Regulated by the Slope of a Trapezoidal Modulator Wave
,” IEEE Trans. Ind. Electron.
, 56
(6
), pp. 2270
–2274
.10.1109/TIE.2009.20149013.
Trzynadlowski
, A.
, Kirlin
, R.
, and Legowski
, S.
, 1997
, “Space Vector PWM Technique With Minimum Switching Losses and a Variable Pulse Rate [for VSI]
,” IEEE Trans. Ind. Electron.
, 44
(2
), pp. 173
–181
.10.1109/41.5641554.
Borisov
, K.
, Calvert
, T.
, Kleppe
, J.
, Martin
, E.
, and Trzynadlowski
, A.
, 2006
, “Experimental Investigation of a Naval Propulsion Drive Model With the PWM-Based Attenuation of the Acoustic and Electromagnetic Noise
,” IEEE Trans. Ind. Electron.
, 53
(2
), pp. 450
–457
.10.1109/TIE.2006.8708735.
Lim
, Y.-C.
, Wi
, S.-O.
, Kim
, J.-N.
, and Jung
, Y.-G.
, 2010
, “A Pseudorandom Carrier Modulation Scheme
,” IEEE Trans. Power Electron.
, 25
(4
), pp. 797
–805
.10.1109/TPEL.2009.20356996.
Kirlin
, R.
, Lascu
, C.
, and Trzynadlowski
, A.
, 2011
, “Shaping the Noise Spectrum in Power Electronic Converters
,” IEEE Trans. Ind. Electron.
, 58
(7
), pp. 2780
–2788
.10.1109/TIE.2010.20764177.
Basu
, K.
, Prasad
, J. S. S.
, Narayanan
, G.
, Krishnamurthy
, H. K.
, and Ayyanar
, R.
, 2010
, “Reduction of Torque Ripple in Induction Motor Drives Using an Advanced Hybrid PWM Technique
,” IEEE Trans. Ind. Electron.
, 57
(6
), pp. 2085
–2091
.10.1109/TIE.2009.20341838.
Shyu
, K.-K.
, Lin
, J.-K.
, Pham
, V.-T.
, Yang
, M.-J.
, and Wang
, T.-W.
, 2010
, “Global Minimum Torque Ripple Design for Direct Torque Control of Induction Motor Drives
,” IEEE Trans. Ind. Electron.
, 57
(9
), pp. 3148
–3156
.10.1109/TIE.2009.20384019.
Vafakhah
, B.
, Salmon
, J.
, and Knight
, A.
, 2010
, “A New Space-Vector PWM With Optimal Switching Selection for Multilevel Coupled Inductor Inverters
,” IEEE Trans. Ind. Electron.
, 57
(7
), pp. 2354
–2364
.10.1109/TIE.2009.203893910.
Aghili
, F.
, 2011
, “Ripple Suppression of Bldc Motors With Finite Driver/Amplifier Bandwidth at High Velocity
,” IEEE Trans. Control Syst. Technol.
, 19
(2
), pp. 391
–397
.10.1109/TCST.2010.204550211.
ABB, 2011, “Technical Guide No. 1 Direct Torque Control - The Worlds Most Advanced AC Drive Technology Rev. C,” ABB, p. 18.
12.
Zhang
, Y.
, Zhu
, J.
, Xu
, W.
, and Guo
, Y.
, 2011
, “A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle
,” IEEE Trans. Ind. Electron.
, 58
(7
), pp. 2848
–2859
.10.1109/TIE.2010.207641313.
Zhang
, Y.
, and Zhu
, J.
, 2011
, “A Novel Duty Cycle Control Strategy to Reduce Both Torque and Flux Ripples for DTC of Permanent Magnet Synchronous Motor Drives With Switching Frequency Reduction
,” IEEE Trans. Power Electron.
, 26
(10
), pp. 3055
–3067
.10.1109/TPEL.2011.212957714.
Lascu
, C.
, Boldea
, I.
, and Blaabjerg
, F.
, 2012
, “Direct Torque Control Via Feedback Linearization for Permanent Magnet Synchronous Motor Drives
,” 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)
, pp. 338
–343
.15.
Gao
, L.
, Fletcher
, J.
, and Zheng
, L.
, 2011
, “Low-Speed Control Improvements for a Two-Level Five-Phase Inverter-Fed Induction Machine Using Classic Direct Torque Control
,” IEEE Trans. Ind. Electron.
, 58
(7
), pp. 2744
–2754
.10.1109/TIE.2010.207077516.
Zhang
, Y.
, Zhu
, J.
, Guo
, Y.
, Xu
, W.
, Wang
, Y.
, and Zhao
, Z.
, 2009
, “A Sensorless Dtc Strategy of Induction Motor Fed by Three-Level Inverter Based on Discrete Space Vector Modulation
,” Power Engineering Conference
, Australasian Universities
, AUPEC 2009, pp. 1
–6
.17.
Taheri
, A.
, Rahmati
, A.
, and Kaboli
, S.
, 2012
, “Efficiency Improvement in DTC of Six-Phase Induction Machine by Adaptive Gradient Descent of Flux
,” IEEE Trans. Power Electron.
, 27
(3
), pp. 1552
–1562
.10.1109/TPEL.2011.216342018.
Zheng
, L.
, Fletcher
, J.
, Williams
, B.
, and He
, X.
, 2011
, “A Novel Direct Torque Control Scheme for a Sensorless Five-Phase Induction Motor Drive
,” IEEE Trans. Ind. Electron.
, 58
(2
), pp. 503
–513
.10.1109/TIE.2010.204783019.
Geyer
, T.
, 2011
, “Computationally Efficient Model Predictive Direct Torque Control
,” IEEE Trans. Power Electron.
, 26
(10
), pp. 2804
–2816
.10.1109/TPEL.2011.212192120.
Cortes
, P.
, Kazmierkowski
, M.
, Kennel
, R.
, Quevedo
, D.
, and Rodriguez
, J.
, 2008
, “Predictive Control in Power Electronics and Drives
,” IEEE Trans. Ind. Electron.
, 55
(12
), pp. 4312
–4324
.10.1109/TIE.2008.200748021.
Kouro
, S.
, Cortes
, P.
, Vargas
, R.
, Ammann
, U.
, and Rodriguez
, J.
, 2009
, “Model Predictive Control-A Simple and Powerful Method to Control Power Converters
,” IEEE Trans. Ind. Electron.
, 56
(6
), pp. 1826
–1838
.10.1109/TIE.2008.200834922.
Bemporad
, A.
, Borrelli
, F.
, and Morari
, M.
, 2002
, “Model Predictive Control Based on Linear Programming - the Explicit Solution
,” IEEE Trans. Autom. Control
, 47
(12
), pp. 1974
–1985
.10.1109/TAC.2002.80568823.
Mariethoz
, S.
, Domahidi
, A.
, and Morari
, M.
, 2012
, “High-Bandwidth Explicit Model Predictive Control of Electrical Drives
,” IEEE Trans. Ind. Appl.
, 48
(99
), pp. 1980
–1992
.24.
Beccuti
, A.
, Mariethoz
, S.
, Cliquennois
, S.
, Wang
, S.
, and Morari
, M.
, 2009
, “Explicit Model Predictive Control of DC x2013; DC Switched-Mode Power Supplies With Extended Kalman Filtering
,” IEEE Trans. Ind. Electron.
, 56
(6
), pp. 1864
–1874
.10.1109/TIE.2009.201574825.
Almer
, S.
, Mariethoz
, S.
, and Morari
, M.
, 2013
, “Sampled Data Model Predictive Control of a Voltage Source Inverter for Reduced Harmonic Distortion
,” IEEE Trans. Control Syst. Technol.
, 21
(5
), pp. 1907
–1975
.10.1109/TCST.2012.221477726.
Zeilinger
, M.
, Jones
, C.
, and Morari
, M.
, 2011
, “Real-Time Suboptimal Model Predictive Control Using a Combination of Explicit MPC and Online Optimization
,” IEEE Trans. Autom. Control
, 56
(7
), pp. 1524
–1534
.10.1109/TAC.2011.210845027.
Cortes
, P.
, Vattuone
, L.
, and Rodriguez
, J.
, 2011
, “Predictive Current Control With Reduction of Switching Frequency for Three Phase Voltage Source Inverters
,” 2011 IEEE International Symposium on Industrial Electronics (ISIE)
, pp. 1817
–1822
.28.
Geyer
, T.
, Papafotiou
, G.
, and Morari
, M.
, 2009
, “Model Predictive Direct Torque Control x2014; Part I: Concept, Algorithm, and Analysis
,” IEEE Trans. Ind. Electron.
, 56
(6
), pp. 1894
–1905
.10.1109/TIE.2008.200703029.
Papafotiou
, G.
, Kley
, J.
, Papadopoulos
, K.
, Bohren
, P.
, and Morari
, M.
, 2009
, “Model Predictive Direct Torque Control x2014; Part ii: Implementation and Experimental Evaluation
,” IEEE Trans. Ind. Electron.
, 56
(6
), pp. 1906
–1915
.10.1109/TIE.2008.200703230.
Preindl
, M.
, Schaltz
, E.
, and Thogersen
, P.
, 2011
, “Switching Frequency Reduction Using Model Predictive Direct Current Control for High-Power Voltage Source Inverters
,” IEEE Trans. Ind. Electron.
, 58
(7
), pp. 2826
–2835
.10.1109/TIE.2010.207289431.
Martinez
, J.
, Kennel
, R.
, and Geyer
, T.
, 2010
, “Model Predictive Direct Current Control
,” 2010 IEEE International Conference on Industrial Technology (ICIT)
, pp. 1808
–1813
.32.
Mariethoz
, S.
, Domahidi
, A.
, and Morari
, M.
, 2009
, “A Model Predictive Control Scheme With Torque Ripple Mitigation for Permanent Magnet Motors
,” Industrial Electronics, 2009 IECON ’09. 35th Annual Conference of IEEE
, pp. 985
–990
.33.
Geyer
, T.
, 2011
, “A Comparison of Control and Modulation Schemes for Medium-Voltage Drives: Emerging Predictive Control Concepts Versus PWM-Based Schemes
,” IEEE Trans. Ind. Appl.
, 47
(3
), pp. 1380
–1389
.10.1109/TIA.2011.212743334.
Barrero
, F.
, Prieto
, J.
, Levi
, E.
, Gregor
, R.
, Toral
, S.
, Duran
, M.
, and Jones
, M.
, 2011
, “An Enhanced Predictive Current Control Method for Asymmetrical Six-Phase Motor Drives
,” IEEE Trans. Ind. Electron.
, 58
(8
), pp. 3242
–3252
.10.1109/TIE.2010.208994335.
Romero
, M.
, Seron
, M.
, and Goodwin
, G.
, 2011
, “A Combined Model Predictive Control/Space Vector Modulation (MPC-SVM) Strategy for Direct Torque and Flux Control of Induction Motors
,” IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society
, pp. 1674
–1679
.36.
Barrero
, F.
, Arahal
, M.
, Gregor
, R.
, Toral
, S.
, and Duran
, M.
, 2009
, “A Proof of Concept Study of Predictive Current Control for VSI-Driven Asymmetrical Dual Three-Phase AC Machines
,” IEEE Trans. Ind. Electron.
, 56
(6
), pp. 1937
–1954
.10.1109/TIE.2008.201160437.
Geyer
, T.
, 2011
, “Model Predictive Direct Torque Control: Derivation and Analysis of the Explicit Control Law
,” Energy Conversion Congress and Exposition (ECCE), IEEE
, pp. 355
–362
.10.1109/ECCE.2011.606379138.
Prior
, G.
, and Krstic
, M.
, 2013
, “Quantized-Input Control Lyapunov Approach for Permanent Magnet Synchronous Motor Drives
,” IEEE Trans. Control Syst. Technol.
, 21
(5
), pp. 1784
–1794
.10.1109/TCST.2012.221224639.
Goodwin
, G.
, Mayne
, D.
, Chen
, T.
, Coates
, C.
, Mirzaeva
, G.
, and Quevedo
, D.
, 2010
, “Opportunities and Challenges in the Application of Advanced Control to Power Electronics and Drives
,” 2010 IEEE International Conference on Industrial Technology (ICIT)
, pp. 27
–39
.40.
Muller
, C.
, Quevedo
, D.
, and Goodwin
, G.
, 2011
, “How Good is Quantized Model Predictive Control With Horizon One?
,” IEEE Trans. Autom. Control
, 56
(11
), pp. 2623
–2638
.10.1109/TAC.2011.2122610Copyright © 2015 by ASME
You do not currently have access to this content.