Most of existing friction compensation techniques are based on friction models that uses the velocity as its input. These methods are difficult to apply to inexpensive encoder-based actuator systems that do not exhibit sufficiently large presliding displacement. This paper presents a new method of friction compensation that can be applied to geared actuators with high presliding stiffness. The compensator consists of three components that compensate: (a) static friction, (b) rate-dependent kinetic friction, and (c) dynamic friction involving presliding viscoelasticity. The first component employs dither-like torque command, and the other two are based on friction models involving precalibrated parameters. The proposed method is validated through experiments employing a harmonic drive transmission. In particular, it is suggested that the dither-like static friction compensation and the viscosity in the presliding model significantly improve the performance of the compensator.

References

1.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
7
.10.1115/1.3140702
2.
Volpe
,
R.
, and
Khosla
,
P. K.
,
1993
, “
A Theoretical and Experimental Investigation of Explicit Force Control Strategies for Manipulators
,”
IEEE Trans. Autom. Control
,
38
(
11
), pp.
1634
1650
.10.1109/9.262033
3.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
103
(
2
), pp.
126
133
.10.1115/1.3139652
4.
Yoshikawa
,
T.
,
1987
, “
Dynamic Hybrid Position/Force Control of Robot Manipulators-Description of Hand Constraints and Calculation of Joint Driving Force
,”
IEEE J. Rob. Autom.
,
3
(
5
), pp.
386
392
.10.1109/JRA.1987.1087120
5.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
6.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C.
, and
Prajogo
,
T.
,
2000
, “
An Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Control Syst. Technol.
,
45
(
4
), pp.
675
686
.10.1109/9.847103
7.
Al-Bender
,
F.
,
Lampaert
,
V.
, and
Swevers
,
J.
,
2005
, “
The Generalized Maxwell-Slip Model: A Novel Model for Friction Simulation and Compensation
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1883
1887
.10.1109/TAC.2005.858676
8.
Ruderman
,
M.
, and
Bertram
,
T.
,
2013
, “
Two-State Dynamic Friction Model With Elasto-Plasticity
,”
J. Mech. Syst. Signal Process.
,
39
(
1–2
), pp.
316
332
.10.1016/j.ymssp.2013.03.010
9.
Tjahjowidodo
,
T.
,
Al-Bender
,
F.
,
Van Brussel
,
H.
, and
Symens
,
W.
,
2007
, “
Friction Characterization and Compensation in Electro-Mechanical Systems
,”
J. Sound Vib.
,
308
(
3–5
), pp.
632
646
.10.1016/j.jsv.2007.03.075
10.
Casanova
,
C. C.
,
Pieri
,
E. R. D.
,
Moreno
,
U. F.
, and
Castelan
,
E. B.
,
2008
, “
Friction Compensation in Flexible Joints Robot With GMS Model: Identification, Control, and Experiments
,”
Proceedings of IFAC World Congress
, Vol.
17
, pp.
11793
11798
.
11.
Zschäck
,
S.
,
Büchner
,
S.
,
Amthor
,
A.
, and
Ament
,
C.
,
2012
, “
Maxwell Slip Based Adaptive Friction Compensation in High Precision Applications
,”
Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society
, pp.
2331
2336
.
12.
Ruderman
,
M.
,
2014
, “
Tracking Control of Motor Drives Using Feedforward Friction Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3727
3735
.10.1109/TIE.2013.2264786
13.
Ferretti
,
G.
,
Magnani
,
G.
,
Martucci
,
G.
,
Rocco
,
P.
, and
Stampacchia
,
V.
,
2003
, “
Friction Model Validation in Sliding and Presliding Regimes With High Resolution Encoders
,”
Experimental Robotics VIII, Springer Tracts in Advanced Robotics
, Vol.
5
, Siciliano, B., and Dario, P., eds.,
Springer
,
Berlin, Germany
, pp.
328
337
.
14.
Hensen
,
R.
,
Van de Molengraft
,
M. J. G.
, and
Steinbuch
,
M.
,
2002
, “
Frequency Domain Identification of Dynamic Friction Model Parameters
,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
191
196
.10.1109/87.987064
15.
Choi
,
J.-J.
,
Han
,
S.-I.
, and
Kim
,
J.-S.
,
2006
, “
Development of a Novel Dynamic Friction Model and Precise Tracking Control Using Adaptive Back-Stepping Sliding Mode Controller
,”
Mechatronics
,
16
(
2
), pp.
97
104
.10.1016/j.mechatronics.2005.10.004
16.
Pervozvanski
,
A. A.
, and
Canudas de Wit
,
C.
,
2002
, “
Asymptotic Analysis of the Dither Effect in Systems With Friction
,”
Automatica
,
38
(
1
), pp.
105
113
.10.1016/S0005-1098(01)00166-2
17.
Ipri
,
S. L.
, and
Asada
,
H.
,
1995
, “
Tuned Dither for Friction Suppression During Force-Guided Robotic Assembly
,”
Proceedings of International Conference Intelligent Robots and Systems
, pp.
310
315
.
18.
Yang
,
S.
, and
Tomizuka
,
M.
,
1988
, “
Adaptive Pulse Width Control for Precise Positioning Under the Influence of Stiction and Coulomb Friction
,”
ASME J. Dyn. Syst., Meas. Control
,
110
(
3
), pp.
221
227
.10.1115/1.3152675
19.
Hagglund
,
T.
,
2002
, “
A Friction Compensator for Pneumatic Control Valves
,”
J. Process Control
,
12
(
8
), pp.
897
904
.10.1016/S0959-1524(02)00015-X
20.
Kikuuwe
,
R.
,
Yasukouchi
,
S.
,
Fujimoto
,
H.
, and
Yamamoto
,
M.
,
2010
, “
Proxy-Based Sliding Mode Control: A Safer Extension of PID Position Control
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
670
683
.10.1109/TRO.2010.2051188
21.
Janabi-Shariff
,
F.
,
Hayward
,
V.
, and
Chen
,
C.
,
2000
, “
Discrete-Time Adaptive Windowing for Velocity Estimation
,”
IEEE Trans. Control Syst. Technol.
,
8
(
6
), pp.
1003
1009
.10.1109/87.880606
22.
Acary
,
V.
,
Brogliato
,
B.
, and
Goeleven
,
D.
,
2008
, “
Higher Order Moreau's Sweeping Process: Mathematical Formulation and Numerical Simulation
,”
J. Math. Program.
,
113
(
1
), pp.
133
217
.10.1007/s10107-006-0041-0
23.
Mahvash
,
M.
, and
Okamura
,
A. M.
,
2007
, “
Friction Compensation for Enhancing Transparency of a Teleoperator With Compliant Transmission
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1240
1246
.10.1109/TRO.2007.909825
24.
Kikuuwe
,
R.
,
Takesue
,
N.
,
Sano
,
A.
,
Mochiyama
,
H.
, and
Fujimoto
,
H.
,
2006
, “
Admittance and Impedance Representations of Friction Based on Implicit Euler Integration
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1176
1188
.10.1109/TRO.2006.886262
25.
Chen
,
W.
,
Kong
,
K.
, and
Tomizuka
,
M.
,
2009
, “
Hybrid Adaptive Friction Compensation of Indirect Drive Trains
,” Proceedings of
ASME
Dynamic Systems and Control Conference
, Hollywood, CA, Oct. 12–14, pp.
313
320
, ASME Paper No. DSCC2009-2736.10.1115/DSCC2009-2736
You do not currently have access to this content.