The traditional linear quadratic (LQ) controller can give optimal performance to a known linear system with weightings in the time domain, while the frequency shaped LQ (FSLQ) controller is able to provide optimal performance to the same class of systems with weightings in the frequency domain. When the system contains uncertainties, both of these two approaches fail. In this paper, an adaptive controller is proposed to an uncertain mechanical system such that LQ performance can be achieved with weightings in the frequency domain. The function approximation technique is applied to represent the uncertainties into a finite combination of a set of known basis functions. This allows the system to be with various nonlinearities and uncertainties without significant impact on the design procedure. The Lyapunovlike analysis is used to ensure convergence of the system output and boundedness of the internal signals. A dual stage is built to evaluate the performance of the proposed scheme experimentally.

References

1.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1989
,
Optimal Control: Linear Quadratic Methods
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Gupta
,
N. K.
,
1980
, “
Frequency-Shaped Cost Functionals: Extension of Linear Quadratic Gaussian Design Methods
,”
J. Guid., Control, Dyn.
,
3
(
6
), pp.
529
535
.
3.
Yamaguchi
,
H.
,
Doi
,
S. I.
,
Iwama
,
N.
, and
Hayashi
,
Y.
,
1993
, “
Experimental Study of System Optimization for Suppression of Vehicle Vibration
,”
Veh. Syst. Dyn.
,
22
(
5
), pp.
299
308
.
4.
MacLeod
,
C.
, and
Goodall
,
R. M.
,
1996
, “
Frequency-Shaping LQ Control of Maglev Suspension Systems for Optimal Performance With Deterministic and Stochastic Inputs
,”
IEE Proc.: Control Theory Appl.
,
143
(
1
), pp.
25
30
.
5.
Kim
,
K.
, and
Jeon
,
D.
,
1999
, “
Vibration Suppression in an MR Fluid Damper Suspension System
,”
J. Intell. Mater. Syst. Struct.
,
10
(
10
), pp.
779
786
.
6.
Hara
,
H.
, and
Yoshida
,
K.
,
1996
, “
Simultaneous Optimization of Positioning and Vibration Control Using a Time-Varying Frequency-Shaped Criterion Function
,”
Control Eng. Pract.
,
4
(
4
), pp.
553
561
.
7.
Lewis
,
B. M.
, and
Tran
,
H. T.
,
2007
, “
Real-Time Implementation of a Frequency Shaping Controller on a Cantilever Beam
,”
Appl. Num. Math.
,
57
(
5
), pp.
778
790
.
8.
Chee
,
W.
, and
Tomizuka
,
M.
,
1994
, “
Lane Change Maneuver of Automobiles for the Intelligent Vehicle and Highway System
,”
American Control Conference
, June 29–July 1, pp.
3586
3587
.
9.
Acarman
,
T.
, and
Ozguner
,
U.
,
2006
, “
Rollover Prevention for Heavy Trucks Using Frequency Shaped Sliding Mode Control
,”
Veh. Syst. Dyn.
,
44
(
10
), pp.
737
762
.
10.
Mourad
,
L.
,
Claveau
,
F.
, and
Chevrel
,
P.
,
2012
, “
Design of a Two DOF Gain Scheduled Frequency Shaped LQ Controller for Narrow Tilting Vehicles
,”
American Control Conference
, Montreal, Canada, June 27–29, pp.
6739
6744
.
11.
Ouarit
,
H.
,
Lefevre
,
L.
, and
Georges
,
D.
,
2003
, “
Robust Optimal Control of One-Reach Open Channels
,”
European Control Conference
, Cambridge, UK, Sept. 1–4, pp.
2413
2417
.
12.
Furuta
,
K.
, and
Yamakita
,
M.
,
1991
, “
Suppression Vibration of Robot Arm Using Frequency Dependent LQ Method
,”
International Conference on Industrial Electronics, Control, and Instrumentation
, Kobe, Japan, Oct. 28–Nov. 1, pp.
443
448
.
13.
Borowiec
,
J.
, and
Tzes
,
A.
,
1997
, “
Linear Quadratic Frequency-Shaped Implicit Force Control of Flexible Link Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
405
411
.
14.
Anderson
,
B. D. O.
,
Moore
,
J. B.
, and
Mingori
,
D. L.
,
1987
, “
Relations Between Frequency-Dependent Control and State Weighting in LQG Problems
,”
Optim. Control Appl. and Methods
,
8
(
2
), pp.
109
127
.
15.
Cheok
,
K. C.
,
Hu
,
H.
, and
Loh
,
N.
,
1988
, “
Optimal Output Feedback Regulation With Frequency-Shaped Cost Functional
,”
Int. J. Control
,
47
(
6
), pp.
1665
1681
.
16.
Mackison
,
D.
,
Fulton
,
J.
, and
Palo
,
S.
,
2006
, “
Frequency Shaped Cost Functionals, Guaranteed Cost Control, Modal Weighting, Loop Transmission Recovery, and Reduced Order Compensators
,”
AIAA
Paper No. 2006-6521.
17.
Anderson
,
B. D. O.
, and
Mingori
,
D. L.
,
1985
, “
Use of Frequency Dependence in Linear Quadratic Control Problems to Frequency-Shape Robustness
,”
J. Guid., Control Dyn.
,
8
(
3
), pp.
397
401
.
18.
Moore
,
J. B.
, and
Mingori
,
D. L.
,
1987
, “
Robust Frequency Shaped LQ Control
,”
Automatica
,
23
(
5
), pp.
641
646
.
19.
Tharp
,
H. S.
,
Medanic
,
J. V.
, and
Perkins
,
W. R.
,
1988
, “
Parameterization of Frequency Weighting for a Two-Stage Linear Quadratic Regulator Based Design
,”
Automatica
,
24
(
3
), pp.
415
418
.
20.
Teo
,
L.
, and
Tomizuka
,
M.
,
1989
, “
Frequency Shaped Cost Functionals: Output or Input Weighting
,”
Conference on Decision and Control
, Tampa, FL, Dec. 13–15, pp.
2389
2390
.
21.
Korondi
,
P.
,
Hashimoto
,
H.
,
Gajdar
,
T.
, and
Suto
,
Z.
,
1996
, “
Optimal Sliding Mode Design for Motion Control
,”
IEEE
International Symposium on Industrial Electronics
, Warsaw, Poland, June 17–20, pp.
277
282
.
22.
Koshkouel
,
J.
, and
Zinober
,
A. S. I.
,
2000
, “
Robust Frequency Shaping Sliding Mode Control
,”
IET Control Theory Appl.
,
147
(
3
), pp.
312
320
.
23.
Acarman
,
T.
, and
Redmill
,
K. A.
,
2002
, “
A Robust Controller Design for Drive by Wire Hydraulic Power Steering System
,”
American Control Conference
, pp.
2522
2527
.
24.
Lee
,
S. U.
,
Chang
,
P. H.
, and
Kim
,
S. T.
,
2003
, “
Time Delay Control With Switching Action Using Frequency Shaped Integral Sliding Surface
,”
American Control Conference
, June 4–6, pp.
202
207
.
25.
Mehta
,
J.
, and
Bandyopadhyay
,
B.
,
2006
, “
Multirate Output Feedback Based Frequency Shaped Sliding Mode Control
,”
IEEE
International Conference on Industrial Technology
, Mumbai, India, Dec. 15–17, pp.
2658
2662
.
26.
Mehta
,
J.
, and
Bandyopadhyay
,
B.
,
2009
, “
Frequency Shaped Sliding Mode Control Using Output Sampled Measurements
,”
IEEE Transaction on Industrial Electronics
,
56
(
1
), pp.
28
35
.
27.
Mehta
,
J.
, and
Bandyopadhyay
,
B.
,
2010
, “
The Design and Implementation of Output Feedback Based Frequency Shaped Sliding Mode Controller for the Smart Structure
,”
IEEE
International Symposium on Industrial Electronics
, pp.
353
358
.
28.
Huang
,
A. C.
, and
Chien
,
M. C.
,
2010
,
Adaptive Control of Robot Manipulators—A Unified Regressor-Free Approach
,
World Scientific
,
Singapore
.
29.
Chen
,
Y. F.
, and
Huang
,
A. C.
,
2012
, “
Controller Design for a Class of Underactuated Mechanical Systems
,”
IET Control Theory Appl.
,
6
(
1
), pp.
103
110
.
30.
Kai
,
Y.
, and
Huang
,
A. C.
,
2013
, “
A Regressor-Free Adaptive Controller for Robot Manipulators Without Slotine and Li's Modification
,”
Robotica
,
31
(
7
), pp.
1051
1058
.
31.
Yao
,
W. H.
, and
Tomizuka
,
M.
,
1993
, “
Servo System Design Based on LQ and H∝ Approaches
,”
American Control Conference
, San Francisco, CA, June 2–4, pp.
2780
2784
.
You do not currently have access to this content.