Vibration is an environmental factor with hazardous effects on the instruments' precision, structural stability, and service life in engineering fields. Many kinds of energy dissipation devices have been invented to reduce the dynamic responses of structures and instruments due to environmental excitations. In this paper, a new kind of vibration isolation and suppression device with high damping performance, fine deformation recoverability, and bearing capacity for platform structures is developed, which is designed by considering the combination of the energy dissipation mechanisms of viscoelastic material, viscous fluid, and air spring. A series of dynamic properties tests on the device are carried out under different excitation frequencies and displacement amplitudes, and a mathematical model considering the coupling effects of energy dissipation of viscoelastic material, viscous liquid, and air spring is proposed. The research results indicate that the vibration isolation and suppression device has high damping capacity, and the proposed mathematical model can well describe the mechanical properties affected by excitation frequency and displacement amplitude.

References

1.
Zhang
,
B.
,
Jia
,
P.
, and
Huang
,
M.
,
2003
, “
Passive Vibration Control of Image Blur Resulting From Mechanical Vibrations on Moving Vehicles
,”
Opt. Tech.
,
29
(
3
), pp.
281
283
.
2.
Geng
,
Z. J.
,
Pan
,
G. G.
,
Haynes
,
L. S.
,
Wada
,
B. K.
, and
Garba
,
J. A.
,
1995
, “
An Intelligent Control System for Multiple Degree of Freedom Vibration Isolation
,”
J. Intell. Mater. Syst. Struct.
,
6
(
6
), pp.
787
800
.
3.
Xu
,
Y. L.
, and
Li
,
B.
,
2006
, “
Hybrid Platform for High-Tech Equipment Protection Against Earthquake and Micro-Vibration
,”
Earthquake Eng. Struct. Dyn.
,
35
(
8
), pp.
943
967
.
4.
Ping
,
Y.
,
2007
, “
Design and Analysis of a Novel Oil-Air Vibration Isolator for Micro-Electromechanical System Manufacturing Platform
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
2
), pp.
195
204
.
5.
Nakamura
,
Y.
,
Nakayama
,
M.
,
Yasuda
,
M.
, and
Fujita
,
T.
,
2006
, “
Development of Active Six-Degrees-of-Freedom Microvibration Control System Using Hybrid Actuators Comprising Air Actuators and Giant Magnetostrictive Actuators
,”
Smart Mater. Struct.
,
15
(
4
), pp.
1133
1142
.
6.
Nakamura
,
Y.
,
Nakayama
,
M.
,
Masuda
,
K.
,
Tanaka
,
K.
,
Yasuda
,
M.
, and
Fujita
,
T.
,
1999
, “
Development of 6-DOF Microvibration Control System Using Giant Magnetostrictive Actuator
,”
Proc. SPIE
,
3671
, p.
229
.
7.
Kim
,
H. S.
, and
Cho
,
Y. M.
,
2009
, “
Design and Modeling of a Novel 3-DOF Precision Micro-Stage
,”
Mechatronics
,
19
(
5
), pp.
598
608
.
8.
Fujita
,
T.
,
Tagawa
,
Y.
,
Kajiwara
,
K.
,
Yoshioka
,
H.
, Takeshita, A., and Yasuda, M.,
1992
, “
Active 6-DOF Microvibration Control System Using Piezoelectric Actuators
,”
Third Conference on Adaptive Structures
, San Diego, CA, Nov. 9–11, Vol.
1
, p.
514
.
9.
Watanabe
,
K.
,
Hara
,
S.
,
Kanemitsu
,
Y.
, and Haga, T.,
1996
, “
Combination of H∞ and PI Control for an Electromagnetically Levitated Vibration Isolation System
,”
35th IEEE Conference on Decision and Control
(
CDC
), Kobe, Japan, Dec. 11–13, Vol.
2
, pp.
1223
1228
.
10.
Takagami
,
T.
, and
Jimbo
,
Y.
,
1988
, “
Study of Active Vibration Isolation System
,”
Precis. Eng.
,
10
(
7
), pp.
3
7
.
11.
Kajiwara
,
K.
,
Hayatu
,
M.
,
Imaoka
,
S.
, and Fujita, T.,
1997
, “
Application of Large Scale Active Micro-Vibration Control System Using Piezoelectric Actuators Applied to Semiconductor Manufacturing Equipment
,”
Proc. SPIE
,
3044
, pp.
258
269
.
12.
Wang
,
C.
,
Xie
,
X.
,
Chen
,
Y.
, and Zhang, Z.,
2016
, “
Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators
,”
J. Sound Vib.
,
383
, pp.
1
19
.
13.
Ou
,
J. P.
,
Long
,
X.
,
Li
,
Q. S.
, and
Xiao
,
Y. Q.
,
2007
, “
Vibration Control of Steel Jacket Offshore Platform Structures With Damping Isolation Systems
,”
Eng. Struct.
,
29
(
7
), pp.
1525
1538
.
14.
Zhang
,
J.
,
Guo
,
Z.
, and
Zhang
,
Y.
,
2016
, “
Dynamic Characteristics of Vibration Isolation Platforms Considering the Joints of the Struts
,”
Acta Astronaut.
,
126
, pp.
120
137
.
15.
Xu
,
Z. D.
,
Suo
,
S.
, and
Lu
,
Y.
,
2016
, “
Vibration Control of Platform Structures With Magnetorheological Elastomer Isolators Based on an Improved SAVS Law
,”
Smart Mater. Struct.
,
25
(
6
), p.
065002
.
16.
Kamesh
,
D.
,
Pandiyan
,
R.
, and
Ghosal
,
A.
,
2010
, “
Modeling, Design and Analysis of Low Frequency Platform for Attenuating Micro-Vibration in Spacecraft
,”
J. Sound Vib.
,
329
(
17
), pp.
3431
3450
.
17.
Zhang
,
L.
,
Long
,
Z.
,
Cai
,
J.
, Liu, Y., Fang, J., and Wang, M. Y.,
2015
, “
Active Vibration Isolation of Macro-Micro Motion Stage Disturbances Using a Floating Stator Platform
,”
J. Sound Vib.
,
354
, pp.
13
33
.
18.
Segerink
,
F. B.
,
Korterik
,
J. P.
, and
Offerhaus
,
H. L.
,
2011
, “
Vibration Transfers to Measure the Performance of Vibration Isolated Platforms on Site Using Background Noise Excitation
,”
Rev. Sci. Instrum.
,
82
(
6
), p.
065111
.
19.
Xu
,
Y.
,
Liu
,
Y.
,
Kan
,
C.
, Shen, Z., and Shi, Z.,
2009
, “
Experimental Research on Fatigue Property of Steel Rubber Vibration Isolator for Offshore Jacket Platform in Cold Environment
,”
Ocean Eng.
,
36
(
8
), pp.
588
594
.
20.
Chen
,
X.
,
2013
, “
Study on Vibration Isolation and Mitigation of a Great-Capacity Platform
,” Master Degree dissertation, Southeast University, Nanjing, China.
21.
Xu
,
Z. D.
,
Liao
,
Y. X.
,
Ge
,
T.
, and
Xu
,
C.
,
2016
, “
Experimental and Theoretical Study on Viscoelastic Dampers With Different Matrix Rubbers
,”
ASCE J. Eng. Mech.
,
142
(
8
), p.
04016051
.
22.
Giovanni
,
M. D.
,
1982
,
Flat and Corrugated Diaphragm Design Handbook
,
Marcel Dekker
,
New York
.
23.
Xu
,
Z. D.
,
2007
, “
Earthquake Suppression Study on Viscoelastic Dampers for Reinforced Concrete Structures
,”
J. Vib. Control
,
13
(
1
), pp.
29
43
.
24.
Xu
,
Z. D.
,
Wang
,
D. X.
, and
Shi
,
C. F.
,
2011
, “
Model, Tests and Application Design for Viscoelastic Dampers
,”
J. Vib. Control
,
17
(
9
), pp.
1359
1370
.
25.
Xu
,
Z. D.
,
Wang
,
S. A.
, and
Xu
,
C.
,
2014
, “
Experimental and Numerical Study on Long-Span Reticulate Structure With Multidimensional High-Damping Earthquake Isolation Devices
,”
J. Sound Vib.
,
333
(
14
), pp.
3044
3057
.
26.
Fournier
,
J. A.
, and
Cheng
,
S.
,
2014
, “
Impact of Damper Stiffness and Damper Support Stiffness on the Efficiency of a Linear Viscous Damper in Controlling Stay Cable Vibrations
,”
ASCE J. Bridge Eng.
,
19
(
4
), p.
04013022
.
27.
Enomoto
,
Y.
,
Fujita
,
S.
, and
Minagawa
,
K.
,
2014
, “
Study on Viscous-Friction Hybrid Damper Installed in Industrial Plants
,”
ASME
Paper No. PVP2014-28380.
28.
Narkhede
,
D. I.
, and
Sinha
,
R.
,
2014
, “
Behavior of Nonlinear Fluid Viscous Dampers for Control of Shock Vibrations
,”
J. Sound Vib.
,
333
(
1
), pp.
80
98
.
29.
Chang
,
F.
, and
Lu
,
Z.
,
2008
, “
Dynamic Model of an Air Spring and Integration Into a Vehicle Dynamics Model
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
10
), pp.
1813
1825
.
30.
Suhara
,
J.
,
Tamura
,
T.
,
Okada
,
Y.
, and
Umeki
,
K.
,
2002
, “
Development of Three Dimensional Seismic Isolation Device With Laminated Rubber Bearing and Rolling Seal Type Air Spring
,”
ASME
Paper No. PVP2002-1430.
31.
Chang
,
K. C.
,
Soong
,
T. T.
,
Lai
,
M. L.
, and
Nielsen
,
E. J.
,
1993
, “
Viscoelastic Dampers as Energy Dissipation Devices for Seismic Application
,”
Earthquake Spectra
,
9
(
3
), pp.
371
387
.
32.
Tsai
,
C. S.
,
1994
, “
Temperature Effect of Viscoelastic Dampers During Earthquakes
,”
ASCE J. Struct. Eng.
,
120
(
2
), pp.
394
409
.
33.
Kirekawa
,
A.
,
Ito
,
Y.
, and
Asano
,
K.
,
1992
, “
A Study of Structural Control Using Viscoelastic Materials
,”
Tenth World Conference
, Balkema, Rotterdam, The Netherlands, pp. 2047–2054.
34.
Christensen
,
R.
,
1971
,
Theory of Viscoelasticity: An Introduction
,
Academic Press
,
New York
.
35.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2001
,
Fundamentals of Fluid Mechanics
, 4th ed.,
Wiley
,
New York
.
You do not currently have access to this content.