Compressible fluid flow modeling for inclined lines is a challenging phenomenon due to the nonlinearity of the governing equations and the spatial–temporal dependency of the fluid density. In this paper, the transmission line analytical model is applied to the determination of inclined compressible fluid flow's dynamics. To establish this model, an exact transcendent solution is developed by solving the Navier–Stokes equation in the Laplace domain. A transfer function approximation, allowing the fluid flow transients determination, is recovered from the exact solution using residual calculations. The error resulting from the polynomial fraction approximation of the transfer functions is circumvented through frequency response corrections for the approximation to meet the exact function steady-state behavior. The effect of gravity and fluid compressibility on the fluid flow dynamics as well as the interplay between those two factors are illustrated through the pressure and flow rate's frequency and time responses.

References

1.
Hirsch
,
C.
,
2006
,
Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
,
Elsevier
,
Burlington, MA
.
2.
Wendt
,
J.
,
2009
,
Computational Fluid Dynamics: An Introduction
,
Von Karman Institute, Springer
,
Berlin
.
3.
Ellul
,
I. R.
,
2010
, “
Dynamic Multiphase Simulation: The State of Play
,”
PSIG Annual Meeting
, Bonita Springs, FL, May 11–14, Paper No. PSIG-1005.https://www.onepetro.org/conference-paper/PSIG-1005
4.
Omrani
,
A. E.
,
Franchek
,
M. A.
,
Grigoriadis
,
K.
, and
Tafreshi
,
R.
,
2016
, “
Liquid Holdup Discretized Solution's Existence and Uniqueness Using a Simplified Averaged One-Dimensional Upward Two-Phase Flow Transient Model
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
8
), p. 081005.
5.
Taitel
,
Y.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1989
, “
Simplified Transient Solution and Simulation of Two-Phase Flow in Pipelines
,”
Chem. Eng. Sci.
,
44
(
6
), pp.
1353
1359
.
6.
Goodson
,
R. E.
, and
Leonard
,
G. R.
,
1972
, “
A Survey of Modeling Techniques for Fluid Line Transients
,”
ASME J. Basic Eng.
,
94
(
2
), pp.
474
482
.
7.
Stecki
,
J. S.
, and
Davis
,
D. C.
,
1986
, “
Fluid Transmission Lines—Distributed Parameter Models—Part 1: A Review of the State of the Art
,”
Proc. Inst. Mech. Eng., Part A
,
200
(
4
), pp.
215
228
.
8.
Brown
,
F. T.
,
1962
, “
The Transient Response of Fluid Lines
,”
ASME J. Basic Eng.
,
84
(
4
), pp.
547
553
.
9.
Oldenberger
,
R.
, and
Goodson
,
R. E.
,
1964
, “
Simplification of Hydraulic Line Dynamics by Use of Infinite Products
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
1
8
.
10.
Hsue
,
C. Y. Y.
, and
Hullender
,
D. A.
,
1983
, “
Modal Approximation for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines
,”
Winter Annual Meeting, Fluid Transmission Line Dynamics
, Boston, MA, Nov. 13–18, pp.
51
77
.http://adsabs.harvard.edu/abs/1983ftld.proc...51H
11.
Meziou
,
A.
,
Chaari
,
M.
,
Franchek
,
M. A.
,
Borji
,
R.
,
Grigoriadis
,
K.
, and
Tafreshi
,
R.
,
2016
, “
Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p.
101008
.
12.
Wylie
,
E.
,
Streeter
,
V.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
New York
.
13.
Ayalew
,
B.
, and
Kulakowski
,
B. T.
,
2005
, “
Modal Approximation of Distributed Dynamics for a Hydraulic Transmission Line With Pressure Input-Flow Rate Output Causality
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
3
), pp.
503
507
.
14.
Suo
,
L.
, and
Wylie
,
E. B.
,
1989
, “
Impulse Response Method for Frequency-Dependent Pipeline Transients
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
478
483
.
15.
Covas
,
D.
,
Ramos
,
H.
, and
Almeida
,
B. A.
,
2005
, “
Impulse Response Method For Solving Hydraulic Transients in Viscoelastic Pipes
,”
XXXI IAHR Congress
, Seoul, South Korea, Sept. 11–16, pp. 676–686.http://www.civil.ist.utl.pt/~joana/artigos%20risco%20ABA/pub-2005/2005-09-13a18%20XXXI_IAHR%20_2005-06-07__PAHR05-0353.pdf
16.
Oldenberger
,
R.
,
1950
, “
Compressible Fluids
,”
Mathematical Engineering Analysis
,
MacMillan
, New York, pp.
367
375
.
17.
Book
,
W. J.
, and
Watson
,
C.
,
2000
, “
Alternatives in the Generation of Time Domain Models of Fluid Lines Using Frequency Domain Techniques
,”
Math. Comput. Simul.
,
53
(4–6), pp.
353
365
.
18.
Anderson
,
J.
,
Degrez
,
G.
, and
Dick
,
E.
,
2009
, “
Governing Equations of Fluid Dynamics
,”
Computational Fluid Dynamics
,
Springer
,
Berlin
, pp.
15
51
.
19.
Petalas
,
N.
, and
Aziz
,
K.
,
2000
, “
A Mechanistic Model for Multiphase Flow in Pipes
,”
J. Can. Pet. Technol.
,
39
(6), pp.
43
55
.
20.
Watson
,
G. N.
,
1958
,
A Treatise on the Theory of Bessel Functions
,
Cambridge University Press
,
Cambridge, UK
.
21.
Hullender
,
D. A.
, and
Healey
,
A. J.
,
1981
, “
Rational Polynomial Approximations for Fluid Transmission Line Models
,”
Fluid Transmission Line Dynamics, Winter Annual Meeting
, Washington, DC, Nov. 15–20, pp.
33
55
.http://adsabs.harvard.edu/abs/1981ftld.proc...33H
You do not currently have access to this content.