Abstract

The residuals of liquid free-surface wave oscillations induced by a rest-to-rest crane maneuver of a suspended liquid container are eliminated using a command-shaped profile. The dynamics of liquid sloshing are modeled using an equivalent mechanical model based on a series of mass-spring-damper systems. The proposed model considers the excited frequencies of the container swing motion and liquid sloshing modes. The objective is to design a discrete-time shaped acceleration profile with a variable command length that controls the moving crane-jib, while suppressing the sloshing modes. Simulations are conducted to illustrate the command effectiveness in eliminating liquid sloshing with a wide variation range of system and command-designing parameters; liquid depth, cable length, command duration, and the employing of higher sloshing modes in representing the sloshing dynamics. The command sensitivity of the input command to changes of the system parameters are treated as well. A refined and smooth input command based on suppressing the residuals of multimodes is also introduced. Furthermore, the command effectiveness was supported by a comparison with the time-optimal flexible-body control and multimode zero vibration input shaper.

References

References
1.
Feddema
,
J. T.
,
Dohrmann
,
C. R.
,
Parker
,
G. G.
,
Robinett
,
R. D.
,
Romero
,
V. J.
, and
Schmitt
,
D. J.
,
1997
, “
Control for Slosh-Free Motion of an Open Container
,”
IEEE Control Syst. Mag.
,
17
(
1
), pp.
29
36
.10.1109/37.569711
2.
Yano
,
K.
, and
Terashima
,
K.
,
2001
, “
Robust Liquid Container Transfer Control for Complete Sloshing Suppression
,”
IEEE Trans. Control Syst. Technol.
,
9
(
3
), pp.
483
493
.10.1109/87.918901
3.
Aboel-Hassan
,
A.
,
Arafa
,
M.
, and
Nassef
,
A.
,
2009
, “
Design and Optimization of Input Shapers for Liquid Slosh Suppression
,”
J. Sound Vib.
,
320
(
1–2
), pp.
1
15
.10.1016/j.jsv.2008.07.015
4.
Kaneshige
,
A.
,
Miyoshi
,
T.
, and
Terashima
,
K.
,
2009
, “
The Development of an Autonomous Mobile Overhead Crane System for the Liquid Tank Transfer
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Singapore, July 14–17, pp.
630
635
.10.1109/AIM.2009.5229942
5.
Murthy
,
A. S.
,
Kivila
,
A.
, and
Singhose
,
W.
,
2012
, “
Slosh Suppression of a Liquid in a Suspended Container Using Robust Input Shaping
,”
19th International Congress on Sound and Vibration
, Vilnius, Lithuania, pp.
1
8
.
6.
Pridgen
,
B.
,
Bai
,
K.
, and
Singhose
,
W.
,
2013
, “
Shaping Container Motion for Multimode and Robust Slosh Suppression
,”
J. Spacecr. Rockets
,
50
(
2
), pp.
440
448
.10.2514/1.A32137
7.
Reyhanoglu
,
M.
, and
Rubio Hervas
,
J.
,
2013
, “
Nonlinear Modeling and Control of Slosh in Liquid Container Transfer Via a PPR Robot
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
6
), pp.
1481
1490
.10.1016/j.cnsns.2012.10.006
8.
AlSaibie
,
A.
, and
Singhose
,
W.
,
2013
, “
Experimental Testing of Liquid Slosh Suppression in a Suspended Container With Compound-Pendulum Dynamics
,”
Ninth Asian Control Conference
(
ASCC
), Istanbul, Turkey, June 23–26, pp.
1
6
.10.1109/ASCC.2013.6606200
9.
Baozeng
,
Y.
, and
Lemei
,
Z.
,
2014
, “
Hybrid Control of Liquid-Filled Spacecraft Maneuvers by Dynamic Inversion and Input Shaping
,”
AIAA J.
,
52
(
3
), pp.
618
626
.10.2514/1.J052526
10.
BiagiottiChiaravalli
,
L.
,
Moriello
,
D.
, and
Melchiorri
,
L. C.
,
2018
, “
A Plug-in Feed-Forward Control for Sloshing Suppression in Robotic Teleoperation Tasks
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Madrid, Spain, Oct. 1–5, pp.
5855
5860
.10.1109/IROS.2018.8593962
11.
Huang
,
J.
, and
Zhao
,
X.
,
2018
, “
Control of Three-Dimensional Nonlinear Slosh in Moving Rectangular Containers
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p. 081016.10.1115/1.4039278
12.
Hasheminejad
,
S. M.
,
Mohammadi
,
M.
, and
Jarrahi
,
M.
,
2014
, “
Liquid Sloshing in Partly-Filled Laterally-Excited Circular Tanks Equipped With Baffles
,”
J. Fluids Struct.
,
44
, pp.
97
114
.10.1016/j.jfluidstructs.2013.09.019
13.
Wang
,
W.
,
Peng
,
Y.
,
Zhou
,
Y.
, and
Zhang
,
Q.
,
2016
, “
Liquid Sloshing in Partly-Filled Laterally-Excited Cylindrical Tanks Equipped With Multi Baffles
,”
Appl. Ocean Res.
,
59
, pp.
543
563
.10.1016/j.apor.2016.07.009
14.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
15.
Hyde
,
J. M. S.
,
1990
, “Using Input Command Pre-Shaping to Suppress Multiple Mode Vibration,”
IEEE
International Conference on Robotics and Automation, Sacramento, CA, Apr. 9–11.10.1109/ROBOT.1991.132020
16.
Singhose
,
W.
,
Seering
,
W.
, and
Singer
,
N.
,
1994
, “
Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs
,”
J. Mech. Des.
,
116
(
2
), pp.
654
659
.10.1115/1.2919428
17.
Singhose
,
W.
,
Seering
,
W. P.
, and
Singer
,
N. C.
,
1996
, “
Input Shaping for Vibration Reduction With Specified Insensitivity to Modeling Errors
,”
Proceedings of the 1996 Japan-USA Symposium on Flexible Automation
, Japan, pp.
307
313
.https://www.researchgate.net/publication/243782033_Input_Shaping_for_Vibration_Reduction_With_Specified_Insensitivity_to_Modeling_Errors
18.
Singhose
,
W.
, and
Pao
,
L.
,
1997
, “
A Comparison of Input Shaping and Time-Optimal Flexible-Body Control
,”
Control Eng. Practice,
5
(
4
), pp.
459
467
. 10.1016/S0967-0661(97)00025-7
19.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
, 1st ed.,
Cambridge University Press
,
New York
.
20.
Graham
,
E.
, and
Rodriguez
,
A.
,
1952
, “
Characteristics of Fuel Motion Which Affect Air Plane Dynamics
,”
ASME J. Appl. Mech.
,
19
, pp.
381
388
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a073847.pdf
21.
Disimile
,
P.
, and
Toy
,
N.
,
2019
, “
The Imaging of Fluid Sloshing Within a Closed Tank Undergoing Oscillations
,”
Results Eng.
,
2
, p.
100014
.10.1016/j.rineng.2019.100014
22.
Abramson, H., N.
,
1966
, “
The Dynamic Behavior of Liquids in Moving Containers, With Applications to Space Vehicle Technology
,” NASA, Washington, DC, Report No.
NASA-SP-106
.https://ntrs.nasa.gov/citations/19670006555
You do not currently have access to this content.