Abstract

When controlled in an open-loop fashion, both stationary and dynamical diesel engine performance can deteriorate due to disturbances. Although cycle-to-cycle fuel injection control has the potential of reducing the performance degradation by manipulating the fueling profile in real time, this potential has not been thoroughly studied. This is especially true for multipulse fuel injection, due to the lack of a controller design method with closed-loop reference tracking performance guarantees. In this paper, we introduce a systematic design method for multivariable cycle-to-cycle fuel injection control. The design method is based on several local linearizations to address varying combustion behavior due to different engine speeds, torques, and disturbances. This leads to a controller that is robust with respect to all the local linearizations. Experimental results show that the controller works well in both stationary and dynamical operating conditions, and has fast dynamical performance (settling time less than 1.5 (s)). Moreover, experimental data show that cycle-to-cycle fuel injection control is robust against the uncertainties introduced by disturbed rail pressure and swirl valve position.

References

References
1.
Mohan
,
B.
,
Yang
,
W.
, and
Chou
,
S.-K.
,
2013
, “
Fuel Injection Strategies for Performance Improvement and Emissions Reduction in Compression Ignition Engines—A Review
,”
Renewable Sustainable Energy Rev
,
28
, pp.
664
676
.10.1016/j.rser.2013.08.051
2.
Badami
,
M.
,
Mallamo
,
F.
,
Millo
,
F.
, and
Rossi
,
E.
,
2002
, “
Influence of Multiple Injection Strategies on Emissions, Combustion Noise and BSFC of a DI Common Rail Diesel Engine
,”
SAE
Paper No. 2002-01-0503.10.4271/2002-01-0503
3.
Zheng
,
M.
, and
Kumar
,
R.
,
2009
, “
Implementation of Multiple-Pulse Injection Strategies to Enhance the Homogeneity for Simultaneous Low-NOx and -Soot Diesel Combustion
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1829
1841
.
4.
Hadler
,
J.
,
Rudolph
,
F.
,
Dorenkamp
,
R.
,
Stehr
,
H.
,
Hilzendeger
,
J.
, and
Kranzusch
,
S.
,
2008
, “
Volkswagen's New 2.0 l TDI Engine for the Most Stringent Emission Standards—Part 1
,”
MTZ Worldwide
,
69
(
5
), pp.
12
18
.10.1007/BF03226908
5.
Satkoski
,
C. A.
,
Ruikar
,
N. S.
,
Biggs
,
S. D.
, and
Shaver
,
G. M.
,
2012
, “
Piezoelectric Fuel Injection: Cycle-to-Cycle Control of Tightly Spaced Injections
,”
Control Eng Pract.
,
20
(
11
), pp.
1175
1182
.10.1016/j.conengprac.2012.06.002
6.
Willems
,
F.
,
Doosje
,
E.
,
Engels
,
F.
, and
Seykens
,
X.
,
2010
, “
Cylinder Pressure-Based Control in Heavy-Duty EGR Diesel Engines Using a Virtual Heat Release and Emission Sensor
,”
SAE
Paper No. 2010-01-0564.10.4271/2010-01-0564
7.
Saracino
,
R.
,
Gaballo
,
M. R.
,
Mannal
,
S.
,
Motz
,
S.
,
Carlucci
,
A.
, and
Benegiamo
,
M.
,
2015
, “
Cylinder Pressure-Based Closed Loop Combustion Control: A Valid Support to Fulfill Current and Future Requirements of Diesel Powertrain Systems
,”
SAE
Paper No. 2015-24-2423.10.4271/2015-24-2423
8.
Husted
,
H.
,
Kruger
,
D.
,
Fattic
,
G.
,
Ripley
,
G.
, and
Kelly
,
E.
,
2007
, “
Cylinder Pressure-Based Control of Pre-Mixed Diesel Combustion
,”
SAE
Paper No. 2007-01-0773.10.4271/2007-01-0773
9.
Dempsey
,
A. B.
,
Walker
,
N. R.
,
Gingrich
,
E.
, and
Reitz
,
R. D.
,
2014
, “
Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines With a Focus on Controllability
,”
Combust. Sci. Technol.
,
186
(
2
), pp.
210
241
.10.1080/00102202.2013.858137
10.
Karlsson
,
M.
,
Ekholm
,
K.
,
Strandh
,
P.
,
Johansson
,
R.
, and
Tunestal
,
P.
,
2010
, “
Multiple-Input Multiple-Output Model Predictive Control of a Diesel Engine
,”
IFAC Symposium on Advances Automotive Control
, Munich, Germany, July 12–14, pp.
131
136
.
11.
Willems
,
F.
,
2018
, “
Is Cylinder Pressure-Based Control Required to Meet Future hd Legislation?
,”
IFAC-PapersOnLine
,
51
(
31
), pp.
111
118
.10.1016/j.ifacol.2018.10.021
12.
Haskara
,
I.
, and
Wang
,
Y.
,
2013
, “
Cylinder Pressure-Based Combustion Controls for Advanced Diesel Combustion With Multiple-Pulse Fuel Injection
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2143
2155
.10.1109/TCST.2012.2227057
13.
Luo
,
X.
,
Wang
,
S.
,
de Jager
,
B.
, and
Willems
,
F.
,
2015
, “
Cylinder Pressure-Based Combustion Control With Multi-Pulse Fuel Injection
,”
IFAC-PapersOnLine
,
48
(
15
), pp.
181
186
.10.1016/j.ifacol.2015.10.026
14.
Luo
,
X.
,
Donkers
,
M. C. F.
,
de Jager
,
B.
, and
Willems
,
F.
,
2019
, “
Systematic Design of Multivariable Fuel Injection Controllers for Advanced Diesel Combustion
,”
IEEE Trans. Control Syst. Technol.
,
27
(
5
), pp.
1979
1990
.10.1109/TCST.2018.2842220
15.
Luo
,
X.
,
Donkers
,
M. C. F.
,
de Jager
,
B.
, and
Willems
,
F.
,
2018
, “
H2-Norm-Based Multi-Pulse Diesel Fuel Injection Control With Minimal Cyclic Combustion Variation
,”
IEEE Control Syst. Lett.
,
2
(
3
), pp.
309
314
.10.1109/LCSYS.2018.2834353
16.
Hillion
,
M.
,
Buhlbuck
,
H.
,
Chauvin
,
J.
, and
Petit
,
N.
,
2009
, “
Combustion Control of Diesel Engines Using Injection Timing
,”
SAE
Paper No. 2009-01-0367.10.4271/2009-01-0367
17.
Killingsworth
,
N. J.
,
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Espinosa-Loza
,
F.
, and
Krstic
,
M.
,
2009
, “
HCCI Engine Combustion-Timing Control: Optimizing Gains and Fuel Consumption Via Extremum Seeking
,”
IEEE Trans. Control Syst. Technol.
,
17
(
6
), pp.
1350
1361
.10.1109/TCST.2008.2008097
18.
Hellström
,
E.
,
Lee
,
D.
,
Jiang
,
L.
,
Stefanopoulou
,
A. G.
, and
Yilmaz
,
H.
,
2013
, “
On-Board Calibration of Spark Timing by Extremum Seeking for Flex-Fuel Engines
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2273
2279
.10.1109/TCST.2012.2236093
19.
Box
,
G. E. P.
,
Jenkins
,
G. M.
,
Reinsel
,
G. C.
, and
Ljung
,
G. M.
,
2015
,
Time Series Analysis: Forecasting and Control
,
Wiley
, Hoboken, NJ.
20.
de Oliveira
,
M. C.
,
Bernussou
,
J.
, and
Geromel
,
J. C.
,
1999
, “
A New Discrete-Time Robust Stability Condition
,”
Syst. Control Lett.
,
37
(
4
), pp.
261
265
.10.1016/S0167-6911(99)00035-3
21.
Gielen
,
R. H.
,
Lazar
,
M.
, and
Kolmanovsky
,
I. V.
,
2012
, “
Lyapunov Methods for Time-Invariant Delay Difference Inclusions
,”
SIAM J. Control Optim.
,
50
(
1
), pp.
110
132
.10.1137/100807065
22.
Grahn
,
M.
,
Johansson
,
K.
, and
McKelvey
,
T.
,
2014
, “
Model-Based Diesel Engine Management System Optimization for Transient Engine Operation
,”
Control Eng Pract.
,
29
, pp.
103
114
. 10.1016/j.conengprac.2014.04.005
You do not currently have access to this content.