Abstract

This paper presents the design, modeling, and control of a three-joint robotic fish propelled by a double-slider-crank (DSC) driven caudal fin. DSC is a mechanism that can use one direct current motor to achieve oscillating foil propulsion. Its design is guided by a traveling wave equation that mimics a fish's undulatory locomotion. After multiple tests, the robotic fish displayed good performance in mimicking a real fish's swimming motion. DSC mechanism is proven to be an effective propulsion technique for a robotic fish. With the help of another servomotor at the first joint of the fish's tail, the robotic fish can have a two-dimensional free-swimming capability. In experiments, the robotic fish can achieve a swimming speed of 0.35 m/s at 3 Hz, equivalent to 0.98 body length (BL) per second. Its steering rate is proportional to a bias angle. The DSC benefits the control of the robotic fish by independently adjusting its steering and swimming speed. This characteristic is studied in a hydrodynamic model that derives the thrust within a DSC frame. Besides the dynamic model, a semiphysics-based and data-driven linear model is established to connect bias angle to robotic fish's heading angle. The linear model is used for designing an observed-state feedback control control, and the controller has been examined in simulation and experiments.

References

1.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Oceanic Eng.
,
24
(
2
), pp.
237
252
.10.1109/48.757275
2.
Barrett
,
D. S.
,
Triantafyllou
,
M. S.
,
Yue
,
D. K. P.
,
Grosenbaugh
,
M. A.
, and
Wolfgang
,
M. J.
,
1999
, “
Drag Reduction in Fish-Like Locomotion
,”
J. Fluid Mech.
,
392
, pp.
183
212
.10.1017/S0022112099005455
3.
Shen
,
L.
,
Zhang
,
X.
,
Yue
,
D. K. P.
, and
Triantafyllou
,
M. S.
,
2003
, “
Turbulent Flow Over a Flexible Wall Undergoing a Streamwise Traveling Wavy Motion
,”
J. Fluid Mech.
,
484
, pp.
197
221
.10.1017/S0022112003004294
4.
Ren
,
Z.
,
Yang
,
X.
,
Wang
,
T.
, and
Wen
,
L.
,
2016
, “
Hydrodynamics of a Robotic Fish Tail: Effects of the Caudal Peduncle, Fin Ray Motions and the Flow Speed
,”
Bioinspiration Biomimetics
,
11
(
1
), p.
016008
.10.1088/1748-3190/11/1/016008
5.
Fish
,
F.
, and
Lauder
,
G. V.
,
2006
, “
Passive and Active Flow Control by Swimming Fishes and Mammals
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
193
224
.10.1146/annurev.fluid.38.050304.092201
6.
Park
,
Y.-J.
,
Jeong
,
U.
,
Lee
,
J.
,
Kwon
,
S.-R.
,
Kim
,
H.-Y.
, and
Cho
,
K.-J.
,
2012
, “
Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1216
1227
.10.1109/TRO.2012.2205490
7.
Katzschmann
,
R. K.
,
DelPreto
,
J.
,
MacCurdy
,
R.
, and
Rus
,
D.
,
2018
, “
Exploration of Underwater Life With an Acoustically Controlled Soft Robotic Fish
,”
Sci. Rob.
,
3
(
16
), p.
eaar3449
.10.1126/scirobotics.aar3449
8.
Hu
,
Y.
,
Zhao
,
W.
, and
Wang
,
L.
,
2009
, “
Vision-Based Target Tracking and Collision Avoidance for Two Autonomous Robotic Fish
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1401
1410
.10.1109/TIE.2009.2014675
9.
Webb
,
P. W.
,
1992
, “
Is the High Cost of Body/Caudal Fin Undulatory Swimming Due to Increased Friction Drag or Inertial Recoil?
,”
J. Exp. Biol.
,
162
(
1
), pp.
157
166
.10.1242/jeb.162.1.157
10.
Yu
,
J.
,
Wang
,
K.
,
Tan
,
M.
, and
Zhang
,
J.
,
2014
, “
Design and Control of an Embedded Vision Guided Robotic Fish With Multiple Control Surfaces
,”
Sci. World J.
,
2014
, p.
631296
.10.1155/2014/631296
11.
Wen
,
L.
,
Wang
,
T. M.
,
Wu
,
G. H.
, and
Liang
,
J. H.
,
2012
, “
Hydrodynamic Investigation of a Self-Propelled Robotic Fish Based on a Force-Feedback Control Method
,”
Bioinspiration Biomimetics
,
7
(
3
), p.
036012
.10.1088/1748-3182/7/3/036012
12.
Wang
,
H.
,
Mi
,
C.
,
Cao
,
Z.
,
Zheng
,
J.
,
Man
,
Z.
,
Jin
,
X.
, and
Tang
,
H.
,
2020
, “
Precise Discrete-Time Steering Control for Robotic Fish Based on Data-Assisted Technique and Super-Twisting-Like Algorithm
,”
IEEE Trans. Ind. Electron.
,
67
(
12
), pp.
10587
10599
.10.1109/TIE.2019.2962464
13.
Hu
,
Y.
,
Wang
,
L.
,
Zhao
,
W.
,
Wang
,
Q.
, and
Zhang
,
L.
,
2007
, “
Modular Design and Motion Control of Reconfigurable Robotic Fish
,”
Proceedings of the 46th IEEE Conference on Decision and Control (CDC)
,
New Orleans, LA
, Dec. 12, pp.
5156
5161
.10.1109/CDC.2007.4434027
14.
Yu
,
J.
,
Zhang
,
C.
, and
Liu
,
L.
,
2016
, “
Design and Control of a Single-Motor-Actuated Robotic Fish Capable of Fast Swimming and Maneuverability
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1711
1719
.10.1109/TMECH.2016.2517931
15.
Clapham
,
R. J.
, and
Hu
,
H.
,
2014
, “
Isplash-i: High Performance Swimming Motion of a Carangiform Robotic Fish With Full-Body Coordination
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Hongkong, China
, May 31, pp.
322
327
.10.1109/ICRA.2014.6906629
16.
Zhu
,
J.
,
White
,
C.
,
Wainwright
,
D. K.
,
Di Santo
,
V.
,
Lauder
,
G. V.
, and
Bart-Smith
,
H.
,
2019
, “
Tuna Robotics: A High-Frequency Experimental Platform Exploring the Performance Space of Swimming Fishes
,”
Sci. Rob.
,
4
(
34
), p.
eaax4615
.10.1126/scirobotics.aax4615
17.
Fish
,
F. E.
,
2020
, “
Advantages of Aquatic Animals as Models for Bio-Inspired Drones Over Present Auv Technology
,”
Bioinspiration Biomimetics
,
15
(
2
), p.
025001
.10.1088/1748-3190/ab5a34
18.
Zhang
,
H.
,
Wang
,
W.
,
Qu
,
Y.
,
Wang
,
C.
,
Fan
,
R.
, and
Xie
,
G.
,
2016
, “
Model Identification for the Yaw Motion of a Tail-Actuated Robotic Fish
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
, Dec. 3, pp.
313
318
.10.1109/ROBIO.2016.7866341
19.
Ariyanto
,
I.
,
Kang
,
T.
, and
Lee
,
Y. J.
,
2006
, “
Dynamics of a Fish-Like Robot and It's Controller Design
,”
Proceedings of the SICE-ICASE International Joint Conference
,
Busan, South Korea
, Oct. 18, pp.
4297
4301
.
20.
Nomoto
,
K.
,
Taguchi
,
T.
,
Honda
,
K.
, and
Hirano
,
S.
,
1957
, “
On the Steering Qualities of Ships
,”
Int. Shipbuilding Prog.
,
4
(
35
), pp.
354
370
.10.3233/ISP-1957-43504
21.
Lighthill
,
M. J.
,
1970
, “
Aquatic Animal Propulsion of High Hydromechanical Efficiency
,”
J. Fluid Mech.
,
44
(
02
), pp.
265
301
.10.1017/S0022112070001830
22.
Wang
,
J.
, and
Tan
,
X.
,
2013
, “
A Dynamic Model for Tail-Actuated Robotic Fish With Drag Coefficient Adaptation
,”
Mechatronics
,
23
(
6
), pp.
659
668
.10.1016/j.mechatronics.2013.07.005
23.
Zuo
,
W.
, and
Chen
,
Z.
,
2018
, “
A Traveling Wave Model Guided Robotic Fish Design Using Double Slot-Crank Mechanism
,”
ASME Paper No. DSCC2018-9064.
10.1115/DSCC2018-9064
24.
Costa
,
D.
,
Palmieri
,
G.
,
Palpacelli
,
M.-C.
,
Scaradozzi
,
D.
, and
Callegari
,
M.
,
2020
, “
Design of a Carangiform Swimming Robot Through a Multiphysics Simulation Environment
,”
Biomimetics
,
5
(
4
), p.
46
.10.3390/biomimetics5040046
25.
Maertens
,
A. P.
,
Gao
,
A.
, and
Triantafyllou
,
M. S.
,
2016
, “
Optimal Undulating Swimming for a Single Fish-Like Body and for a Pair of Interacting Swimmers
,” arXiv preprint arXiv:1604.01065.
26.
Mason
,
R.
, and
Burdick
,
J. W.
,
2000
, “
Experiments in Carangiform Robotic Fish Locomotion
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Francisco, CA
, Apr. 24, Vol.
1
, pp.
428
435
.
27.
Kodati
,
P.
,
Hinkle
,
J.
,
Winn
,
A.
, and
Deng
,
X.
,
2008
, “
Microautonomous Robotic Ostraciiform (Marco): Hydrodynamics, Design, and Fabrication
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
105
117
.10.1109/TRO.2008.915446
28.
Brooks
,
S. A.
, and
Green
,
M. A.
,
2019
, “
Experimental Study of Body-Fin Interaction and Vortex Dynamics Generated by a Two Degree-of-Freedom Fish Model
,”
Biomimetics
,
4
(
4
), p.
67
.10.3390/biomimetics4040067
29.
Taneda
,
S.
,
1976
, “
Visual Study of Unsteady Separated Flows Around Bodies
,”
Prog. Aerosp. Sci.
,
17
(
4
), pp.
287
348
.10.1016/0376-0421(76)90011-7
30.
Van Buren
,
T.
,
Floryan
,
D.
,
Wei
,
N.
, and
Smits
,
A. J.
,
2018
, “
Flow Speed Has Little Impact on Propulsive Characteristics of Oscillating Foils
,”
Phys. Rev. Fluids
,
3
(
1
), p.
013103
.10.1103/PhysRevFluids.3.013103
31.
Chen
,
Z.
,
Hou
,
P.
, and
Ye
,
Z.
,
2019
, “
Robotic Fish Propelled by a Servo Motor and Ionic Polymer-Metal Composite Hybrid Tail
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p.
071001
.10.1115/1.4043101
32.
Castaño
,
M. L.
, and
Tan
,
X.
,
2019
, “
Model Predictive Control-Based Path-Following for Tail-Actuated Robotic Fish
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p.
071012
.10.1115/1.4043152
33.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
,
Hoboken, NJ
.
34.
Verhaegen
,
M.
, and
Dewilde
,
P.
,
1992
, “
Subspace Model Identification Part 2. analysis of the Elementary Output-Error State-Space Model Identification Algorithm
,”
Int. J. Control
,
56
(
5
), pp.
1211
1241
.10.1080/00207179208934364
You do not currently have access to this content.