Abstract

We present an analytical design and experimental verification of trajectory tracking control of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to the origin within a finite terminal time, also referred to as the “settling time.” A key feature of this control strategy is that the settling time is explicitly assigned by the control designer to a value desired, or “prescribed” by the user and that the settling time is independent of the initial conditions and of the reference signal. In order to achieve this beneficial property with the controller, a scaling of the state by a function of time that grows unbounded toward the terminal time is employed. Through Lyapunov analysis, we first demonstrate that the proposed controller achieves regulation of all tracking errors within the prescribed time as well as the uniform boundedness of the joint torques, even in the presence of a matched, nonvanishing disturbance. Then, through both simulation and experiment, we demonstrate that the proposed controller is capable of converging to the desired trajectory within the prescribed time, despite large distance between the initial conditions and the reference trajectory, i.e., in spite of large initial tracking errors, and in spite of a sinusoidal disturbance being applied in each joint.

References

1.
Han
,
S. I.
, and
Lee
,
J.
,
2016
, “
Finite-Time Sliding Surface Constrained Control for a Robot Manipulator With an Unknown Deadzone and Disturbance
,”
ISA Trans.
,
65
, pp.
307
318
.10.1016/j.isatra.2016.07.013
2.
Hong
,
Y.
,
Xu
,
Y.
, and
Huang
,
J.
,
2002
, “
Finite-Time Control for Robot Manipulators
,”
Syst. Control Letters
,
46
(
4
), pp.
243
253
.10.1016/S0167-6911(02)00130-5
3.
Yu
,
S.
,
Yu
,
X.
,
Shirinzadeh
,
B.
, and
Man
,
Z.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.10.1016/j.automatica.2005.07.001
4.
Yang
,
C.
,
Jiang
,
Y.
,
He
,
W.
,
Na
,
J.
,
Li
,
Z.
, and
Xu
,
B.
,
2018
, “
Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence
,”
IEEE Trans. Ind. Electron.
,
65
(
10
), pp.
8112
8123
.10.1109/TIE.2018.2803773
5.
Zhao
,
D.
,
Li
,
S.
,
Zhu
,
Q.
, and
Gao
,
F.
,
2010
, “
Robust Finite-Time Control Approach for Robotic Manipulators
,”
IET Control Theory Appl.
,
4
(
1
), pp.
1
15
.10.1049/iet-cta.2008.0014
6.
Wang
,
Y.
,
Chen
,
M.
, and
Song
,
Y.
,
2021
, “
Robust Fixed-Time Inverse Dynamic Control for Uncertain Robot Manipulator System
,”
Complexity
,
2021
, pp.
1
12
.10.1155/2021/6664750
7.
Zhang
,
D.
,
Kong
,
L.
,
Zhang
,
S.
,
Li
,
Q.
, and
Fu
,
Q.
,
2020
, “
Neural Networks-Based Fixed-Time Control for a Robot With Uncertainties and Input Deadzone
,”
Neurocomputing
,
390
, pp.
139
147
.10.1016/j.neucom.2020.01.072
8.
Su
,
Y.
,
Zheng
,
C.
, and
Mercorelli
,
P.
,
2020
, “
Robust Approximate Fixed-Time Tracking Control for Uncertain Robot Manipulators
,”
Mech. Syst. Signal Process
,
135
, p.
106379
.10.1016/j.ymssp.2019.106379
9.
Jin
,
X.
,
2019
, “
Adaptive Fixed-Time Control for MIMO Nonlinear Systems With Asymmetric Output Constraints Using Universal Barrier Functions
,”
IEEE Trans. Autom. Control
,
64
(
7
), pp.
3046
3053
.10.1109/TAC.2018.2874877
10.
Zhang
,
L.
,
Wang
,
Y.
,
Hou
,
Y.
, and
Li
,
H.
,
2019
, “
Fixed-Time Sliding Mode Control for Uncertain Robot Manipulators
,”
IEEE Access
,
7
, pp.
149750
149763
.10.1109/ACCESS.2019.2946866
11.
Espitia
,
N.
,
Polyakov
,
A.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2019
, “
Boundary Time-Varying Feedbacks for Fixed-Time Stabilization of Constant-Parameter Reaction–Diffusion Systems
,”
Automatica
,
103
, pp.
398
407
.10.1016/j.automatica.2019.02.013
12.
Garg
,
K.
, and
Panagou
,
D.
,
2021
, “
Robust Control Barrier and Control Lyapunov Functions With Fixed-Time Convergence Guarantees
,” 2021 American Control Conference (
ACC
), New Orleans, LA, May 25–28, pp.
2292
2297
.10.23919/ACC50511.2021.9482751
13.
Song
,
Y.
,
Wang
,
Y.
,
Holloway
,
J.
, and
Krstic
,
M.
,
2017
, “
Time-Varying Feedback for Regulation of Normal-Form Nonlinear Systems in Prescribed Finite Time
,”
Automatica
,
83
, pp.
243
251
.10.1016/j.automatica.2017.06.008
14.
Song
,
Y.
,
Wang
,
Y.
, and
Krstic
,
M.
,
2019
, “
Time-Varying Feedback for Stabilization in Prescribed Finite Time
,”
Int. J. Robust Nonlinear Control
,
29
(
3
), pp.
618
633
.10.1002/rnc.4084
15.
Becerra
,
H. M.
,
Vázquez
,
C. R.
,
Arechavaleta
,
G.
, and
Delfin
,
J.
,
2018
, “
Predefined-Time Convergence Control for High-Order Integrator Systems Using Time Base Generators
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1866
1873
.10.1109/TCST.2017.2734050
16.
Obregon-Flores
,
J.
,
Arechavaleta
,
G.
,
Becerra
,
H. M.
, and
Morales-Diaz
,
A.
,
2021
, “
Predefined-Time Robust Hierarchical Inverse Dynamics on Torque-Controlled Redundant Manipulators
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
962
978
.10.1109/TRO.2020.3042054
17.
Muñoz-Vázquez
,
A. J.
,
Sánchez-Torres
,
J. D.
,
Jimenez-Rodriguez
,
E.
, and
Loukianov
,
A. G.
,
2019
, “
Predefined-Time Robust Stabilization of Robotic Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
24
(
3
), pp.
1033
1040
.10.1109/TMECH.2019.2906289
18.
Sánchez-Torres
,
J. D.
,
Muñoz-Vázquez
,
A. J.
,
Defoort
,
M.
,
Jiménez-Rodríguez
,
E.
, and
Loukianov
,
A. G.
,
2020
, “
A Class of Predefined-Time Controllers for Uncertain Second-Order Systems
,”
Eur. J. Control
,
53
, pp.
52
58
.10.1016/j.ejcon.2019.10.003
19.
Cao
,
Y.
, and
Song
,
Y.-D.
,
2020
, “
Adaptive PID-Like Fault-Tolerant Control for Robot Manipulators With Given Performance Specifications
,”
Int. J. Control
,
93
(
3
), pp.
377
386
.10.1080/00207179.2018.1468928
20.
Cao
,
Y.
,
Cao
,
J.
, and
Song
,
Y.
,
2021
, “
Practical Prescribed Time Control of Euler-Lagrange Systems With Partial/Full State Constraints: A Settling Time Regulator-Based Approach
,”
IEEE Trans. Cybern.
, pp.
1
10
.10.1109/TCYB.2021.3100764
21.
Krishnamurthy
,
P.
,
Khorrami
,
F.
, and
Krstic
,
M.
,
2021
, “
Adaptive Output-Feedback Stabilization in Prescribed Time for Nonlinear Systems With Unknown Parameters Coupled With Unmeasured States
,”
Int. J. Adaptive Control Signal Process
,
35
(
2
), pp.
184
202
.10.1002/acs.3193
22.
Li
,
W.
, and
Krstic
,
M.
,
2022
, “
Stochastic Nonlinear Prescribed-Time Stabilization and Inverse Optimality
,”
IEEE Trans. Autom. Control
,
67
(
3
), pp.
1179
1193
.10.1109/TAC.2021.3061646
23.
Steeves
,
D.
,
Krstic
,
M.
, and
Vazquez
,
R.
,
2020
, “
Prescribed–Time Estimation and Output Regulation of the Linearized Schrödinger Equation by Backstepping
,”
Eur. J. Control
,
55
, pp.
3
13
.10.1016/j.ejcon.2020.02.009
24.
Holloway
,
J.
, and
Krstic
,
M.
,
2019
, “
Prescribed-Time Observers for Linear Systems in Observer Canonical Form
,”
IEEE Trans. Autom. Control
,
64
(
9
), pp.
3905
3912
.10.1109/TAC.2018.2890751
25.
Krishnamurthy
,
P.
,
Khorrami
,
F.
, and
Krstic
,
M.
,
2020
, “
A Dynamic High-Gain Design for Prescribed-Time Regulation of Nonlinear Systems
,”
Automatica
,
115
, p.
108860
.10.1016/j.automatica.2020.108860
26.
Khalil
,
H. K.
, and
Grizzle
,
J. W.
,
2002
,
Nonlinear Systems
,
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
27.
Bagheri
,
M.
, and
Naseradinmousavi
,
P.
,
2017
, “
Novel Analytical and Experimental Trajectory Optimization of a 7-DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
4153
4167
.10.1007/s00170-017-0877-x
28.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Morsi
,
R.
,
2017
, “
Experimental and Novel Analytical Trajectory Optimization of a 7-DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses
,”
ASME
Paper No. DSCC2017-5004.10.1115/DSCC2017-5004
29.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Joint-Space Trajectory Optimization of a 7-DOF Baxter Using Multivariable Extremum Seeking
,” 2018 Annual American Control Conference (
ACC
), Milwaukee, WI, June 27–29, pp.
2176
2181
.10.23919/ACC.2018.8430959
30.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Multivariable Extremum Seeking for Joint-Space Trajectory Optimization of a High-Degrees-of-Freedom Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
11
), p.
111017
.10.1115/1.4040752
31.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Analytical and Experimental Predictor-Based Time Delay Control of Baxter Robot
,”
ASME
Paper No. DSCC2018-9101.10.1115/DSCC2018-9101
32.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
,
2019
, “
Feedback Linearization Based Predictor for Time Delay Control of a high-DOF Robot Manipulator
,”
Automatica
,
108
, p.
108485
.10.1016/j.automatica.2019.06.037
33.
Bertino
,
A.
,
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2019
, “
Experimental Autonomous Deep Learning-Based 3D Path Planning for a 7-DOF Robot Manipulator
,”
ASME
Paper No. DSCC2019-8951.10.1115/DSCC2019-8951
34.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
,
2019
, “
Time Delay Control of a High-DOF Robot Manipulator Through Feedback Linearization Based Predictor
,”
ASME
Paper No. DSCC2019-8915.10.1115/DSCC2019-8915
35.
Bertino
,
A.
,
Naseradinmousavi
,
P.
, and
Kelkar
,
A.
,
2021
, “
Analytical and Experimental Decentralized Adaptive Control of a High-Degrees-of-Freedom Robot Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
7
), p.
071007
.10.1115/1.4049795
36.
Bertino
,
A.
,
Naseradinmousavi
,
P.
, and
Krstic
,
M.
,
2021
, “
Experimental and Analytical Delay-Adaptive Control of a 7-DOF Robot Manipulator
,” 2021 American Control Conference (
ACC
), New Orleans, LA, May 25–28, pp.
72
77
.10.23919/ACC50511.2021.9483086
37.
Bertino
,
A.
,
Naseradinmousavi
,
P.
, and
Kelkar
,
A.
,
2020
, “
Experimental and Analytical Decentralized Adaptive Control of a 7-DOF Robot Manipulator
,”
ASME
Paper No. DSCC2020-3181.10.1115/DSCC2020-3181
38.
Bertino
,
A.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
,
2022
, “
Delay-Adaptive Control of a 7-DOF Robot Manipulator: Design and Experiments
,”
IEEE Trans. Control Syst. Technol.
, pp.
1
16
.10.1109/TCST.2022.3152363
You do not currently have access to this content.