Abstract

To reduce the contour error of the end-effector of a robotic manipulator during trajectory tracking, a dual-mode synchronization predictive control is proposed. First, the dynamic model of n-degree-of-freedom (n-DOF) robotic manipulator is discretized by using the Taylor expansion method, and the mapping relationship between the joint error in joint space and the contour error in task space is constructed. Second, the synchronization error and the tracking error in joint space are defined, and the coupling error of joints is derived through the coupling coefficient λ. Third, a dual-mode synchronization predictive control is proposed, and the stability of the proposed control system is guaranteed using constraint set conditions. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.

References

1.
Mohanty
,
S.
,
Regalla
,
S. P.
, and
Rao
,
Y. V. D.
,
2018
, “
Investigation of Influence of Part Inclination and Rotation on Surface Quality in Robot Assisted Incremental Sheet Metal Forming (RAISF)
,”
CIRP J. Manuf. Sci. Technol.
,
22
, pp.
37
48
.10.1016/j.cirpj.2018.04.005
2.
Huang
,
Y.
,
Wang
,
J.
,
Wang
,
F.
, and
He
,
B.
,
2021
, “
Event-Triggered Adaptive Finite-Time Tracking Control for Full State Constraints Nonlinear Systems With Parameter Uncertainties and Given Transient Performance
,”
ISA Trans.
,
108
, pp.
131
143
.10.1016/j.isatra.2020.08.022
3.
Kuang
,
Z. A.
,
Gao
,
H. J.
, and
Tomizuka
,
M.
,
2021
, “
Precise Linear-Motor Synchronization Control Via Cross-Coupled Second-Order Discrete-Time Fractional-Order Sliding Mode
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
358
368
.10.1109/TMECH.2020.3019883
4.
Sun
,
D.
,
2003
, “
Position Synchronization of Multiple Motion Axes With Adaptive Coupling Control
,”
Automatica
,
39
(
6
), pp.
997
1005
.10.1016/S0005-1098(03)00037-2
5.
Sencer
,
B.
,
Kakinuma
,
Y.
, and
Yamada
,
Y.
,
2020
, “
Linear Interpolation of Machining Tool-Paths With Robust Vibration Avoidance and Contouring Error Control
,”
Precis. Eng.
,
66
, pp.
269
281
.10.1016/j.precisioneng.2020.04.007
6.
Wang
,
Q. D.
,
2020
, “
A Robust Trajectory Similarity Measure Method for Classical Trajectory
,”
J. Electr. Inf. Technol.
,
42
(8
), pp.
1999
2005
.10.11999/JEIT190550
7.
Gao
,
Y.
,
Huang
,
J.
, and
Chen
,
L.
,
2021
, “
Constrained Model Predictive Contour Error Control for Feed Drive Systems With Uncertainties
,”
Int. J. Control Autom. Syst.
,
19
(
1
), pp.
209
220
.10.1007/s12555-019-0915-6
8.
Kornmaneesang
,
W.
, and
Chen
,
S. L.
,
2020
, “
MPC-Based Robust Contouring Control a Robotic Machining System
,”
Asian J. Control
23
(
3
), pp.
1212
1224
.10.1002/asjc.2429
9.
Li
,
J. G.
,
Wang
,
Y. M.
,
Li
,
Y. N.
, and
Luo
,
W. S.
,
2020
, “
Reference Trajectory Modification Based on Spatial Iterative Learning for Contour Control of Two-Axis NC Systems
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1266
1275
.10.1109/TMECH.2020.2973085
10.
Li
,
K. L.
,
Boonto
,
S.
, and
Nuchkrua
,
T.
,
2020
, “
On-Line Self Tuning of Contouring Control for High Accuracy Robot Manipulators Under Various Operations
,”
Int. J. Control Autom. Syst.
,
18
(
7
), pp.
1818
1828
.10.1007/s12555-019-0110-9
11.
Gdula
,
M.
,
2019
, “
Adaptive Method of 5-Axis Milling of Sculptured Surfaces Elements With a Curved Line Contour
,”
J. Mech. Sci. Technol.
,
33
(
6
), pp.
2863
2872
.10.1007/s12206-019-0534-4
12.
Chen
,
B. S.
, and
Lee
,
C. H.
,
2020
, “
Adaptive Model-Free Coupling Controller Design for Multi-Axis Motion Systems
,”
Appl. Sci.
,
10
(
10
), p.
3592
.10.3390/app10103592
13.
Wang
,
S. X.
,
Chen
,
G.
, and
Cui
,
Y. L.
,
2019
, “
Design of Contour Error Coupling Controller Based on Neural Network Friction Compensation
,”
Math. Probl. Eng.
,
2019
, pp.
1
8
.10.1155/2019/1420380
14.
Du
,
X.
,
Huang
,
J.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2020
, “
Sliding Mode Control With Third-Order Contour Error Estimation for Free-Form Contour Following
,”
Precis. Eng.
,
66
, pp.
282
294
.10.1016/j.precisioneng.2020.06.015
15.
Xi
,
X. C.
,
Zhao
,
W. S.
, and
Poo
,
A. N.
,
2015
, “
Improving CNC Contouring Accuracy by Robust Digital Integral Sliding Mode Control
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
51
61
.10.1016/j.ijmachtools.2014.08.005
16.
Yang
,
J. X.
, and
Altintas
,
Y.
,
2015
, “
A Generalized on-Line Estimation and Control of Five-Axis Contouring Errors of CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
9
23
.10.1016/j.ijmachtools.2014.08.004
17.
Zhang
,
K.
,
Yuen
,
A.
, and
Altintas
,
Y.
,
2013
, “
Pre-Compensation of Contour Errors in Five-Axis CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
1
11
.10.1016/j.ijmachtools.2013.07.003
18.
Ouyang
,
P. R.
,
Pano
,
V.
, and
Dam
,
T.
,
2015
, “
PID Position Domain Control for Contour Tracking
,”
Int. J. Syst. Sci.
,
46
(
1
), pp.
111
124
.10.1080/00207721.2013.775385
19.
Ouyang
,
P. R.
,
Pano
,
V.
, and
Acob
,
J.
,
2013
, “
Contour Tracking Control for Multi-DOF Robotic Manipulators
,” 10th IEEE International Conference on Control and Automation (
ICCA
), Hangzhou, China, June 12–14, pp.
1491
1496
.10.1109/ICCA.2013.6564888
20.
Mondal
,
A.
,
Ghosh
,
S.
, and
Ghosh
,
A.
,
2016
, “
Efficient Ssilhourtte-Based Contour Tracking Using Local Information
,”
Soft Comput.
,
20
(
2
), pp.
785
805
.10.1007/s00500-014-1543-y
21.
Liu
,
C.
,
Guo
,
W. L.
,
Hu
,
W. D.
,
Chen
,
R. L.
, and
Liu
,
J.
,
2021
, “
Real-Time Model-Based Monocular Pose Tracking for an Asteroid by Contour Fitting
,”
IEEE Trans. Aerosp. Electron. Syst.
,
57
(
3
), pp.
1538
1561
.10.1109/TAES.2020.3044116
22.
Yeh
,
S. S.
, and
Hsu
,
P. L.
,
2002
, “
Estimation of the Contouring Error Vector for the Cross-Coupled Control Design
,”
IEEE/ASME Trans. Mechatron.
,
7
(
1
), pp.
44
51
.10.1109/3516.990886
23.
Bo
,
L.
,
Wang
,
T. Y.
, and
Peng
,
W.
,
2021
, “
Cross-Coupled Control Based on Real-Time Double Circle Contour Error Estimation for Biaxial Motion System
,”
Meas. Control
,
54
(
3–4
), pp.
324
335
.10.1177/0020294021993830
24.
Kim
,
J.
,
Jin
,
M.
,
Park
,
S. H.
,
Chung
,
S. Y.
, and
Hwang
,
M. J.
,
2020
, “
Task Space Trajectory Planning for Robot Manipulators to Follow 3-D Curved Contours
,”
Electronics
,
9
(
9
), p.
1424
.10.3390/electronics9091424
25.
Yang
,
X.
,
Seethaler
,
R.
,
Zhan
,
C. P.
,
Lu
,
D.
, and
Zhao
,
W. H.
,
2019
, “
A Novel Contouring Error Estimation Method for Contouring Control
,”
IEEE/ASME Trans. Mechatronics
,
24
(
4
), pp.
1902
1907
.10.1109/TMECH.2019.2928791
26.
Liu
,
Z.
,
Dong
,
J. C.
,
Wang
,
T.
,
Y, Ren
,
C. Z.
, and
Guo
,
J. X.
,
2020
, “
Real-Time Exact Contour Error Calculation of NURBS Tool Path for Contour Control
,”
Int. J. Adv. Manuf. Technol.
,
108
(
9–10
), pp.
2803
2821
.10.1007/s00170-020-05525-1
27.
Wu
,
X.
,
Dong
,
H.
,
She
,
J. H.
, and
Yu
,
L.
,
2020
, “
High-Precision Contour-Tracking Control of Ethernet-Based Networked Motion Control Systems
,”
IEEJ J. Ind. Appl.
,
9
(
1
), pp.
1
10
.10.1541/ieejjia.9.1
28.
Song
,
D. N.
,
Ma
,
J. W.
,
Zhong
,
Y. G.
, and
Yao
,
J. J.
,
2020
, “
Definition and Estimation of Joint-Space Contour Error Based on Generalized Curve for Five-Axis Contour Following Control
,”
Precis. Eng.
,
65
, pp.
32
43
.10.1016/j.precisioneng.2020.04.023
29.
Cisneros
,
P. S. G.
, and
Werner
,
H.
,
2021
, “
A Velocity Algorithm for Nonlinear Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
29
(
3
), pp.
1310
1315
.10.1109/TCST.2020.2979386
30.
Kang
,
E. L.
,
Qiao
,
H.
,
Gao
,
J.
, and
Yang
,
W. J.
,
2021
, “
Neural Network-Based Model Predictive Tracking Control of an Uncertain Robotic Manipulator With Input Constraints
,”
ISA Trans.
,
109
, pp.
89
101
.10.1016/j.isatra.2020.10.009
31.
Brito
,
B.
,
Floor
,
B.
,
Ferranti
,
L.
, and
Alonso-Mora
,
J.
,
2019
, “
Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4459
4466
.10.1109/LRA.2019.2929976
32.
Becerra
,
V. M.
,
Cage
,
C. N. J.
,
Harwin
,
W. S.
, and
Sharkey
,
P. M.
,
2004
, “
Hardware Retrofit and Computed Torque Control of a PUMA 560 Robot Updating an Industrial Manipulator
,”
IEEE Control Syst. Mag.
,
24
(
5
), pp.
78
82
.10.1109/MCS.2004.1337867
33.
Hedjar
,
R.
,
Toumi
,
R.
,
Boucher
,
P.
, and
Dumur
,
D.
,
2002
, “
Feedback Nonlinear Predictive Control of Rigid Link Robot Manipulators
,”
20th Annual American Control Conference
, Anchorage, AK, May 08–10, pp.
3594
3599
.10.1109/ACC.2002.1024486
34.
Swevers
,
J.
,
Verdonck
,
W.
, and
Schutter
,
J. D.
,
2007
, “
Dynamic Model Identification for Industrial Robots-Integrated Experiment Design and Parameter Estimation
,”
IEEE Control Syst. Mag.
,
27
(
5
), pp.
58
71
.10.1109/MCS.2007.904659
35.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
You do not currently have access to this content.