Abstract

This paper proposes a novel distributed stochastic consensus seeking algorithm for networked nonholonomic wheeled mobile robots (NNWMRs) and its application to consensus-based formation. Time-varying delays and noisy measurement are incorporated into the dynamic model to represent two key issues inherently appearing in the communication and information exchange process among robots. Based on backstepping technique and sliding mode approach, the proposed consensus algorithm integrates kinematic controller and dynamic torque controller into the control protocol. A key feature of the proposed consensus algorithm is the introduction of the consensus gains, which characterizes the effects of time delays and noisy measurement. A unified methodology is provided for the convergence analysis of the networked system by using the generalized stochastic delayed Halanay inequality. It is shown that time delays and noisy measurement can play crucial roles in distributed consensus seeking in collaborative multirobot systems. Illustrative examples and simulations are provided to demonstrate and validate the theoretical results.

References

1.
Cao
,
Y.
,
Yu
,
W.
,
Ren
,
W.
, and
Chen
,
G.
,
2013
, “
An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination
,”
IEEE Trans. Ind. Inf.
,
9
(
1
), pp.
427
438
.10.1109/TII.2012.2219061
2.
Brambilla
,
M.
,
Ferrante
,
E.
,
Birattari
,
M.
, and
Dorigo
,
M.
,
2013
, “
Swarm Robotics: A Review From the Swarm Engineering Perspective
,”
Swarm Intell.
,
7
(
1
), pp.
1
41
.10.1007/s11721-012-0075-2
3.
Maghenem
,
M.
,
Bautista
,
A.
,
Nuno
,
E.
,
Loria
,
A.
, and
Panteley
,
E.
,
2019
, “
Consensus of Multi-Agent Systems With Nonholonomic Restrictions Via Lyapunov's Direct Method
,”
IEEE Control Syst. Lett.
,
3
(
2
), pp.
344
349
.10.1109/LCSYS.2018.2879043
4.
Miao
,
Z. H.
,
Yu
,
J. W.
,
Ji
,
J. C.
, and
Zhou
,
J.
,
2019
, “
Multi-Objective Region Reaching Control for a Swarm of Robots
,”
Automatica
,
103
, pp.
81
87
.10.1016/j.automatica.2019.01.017
5.
Zhang
,
J.
,
Lyu
,
M.
,
Shen
,
T.
,
Liu
,
L.
, and
Bo
,
Y.
,
2018
, “
Sliding Mode Control for a Class of Nonlinear Multi-Agent System With Time Delay and Uncertainties
,”
IEEE Trans. Ind. Electron.
,
65
(
1
), pp.
865
875
.10.1109/TIE.2017.2701777
6.
Meng
,
Z.
, and
Lin
,
Z.
,
2014
, “
On Distributed Finite-Time Observer Design and Finite-Time Coordinated Tracking of Multiple Double Integrator Systems Via Local Interactions
,”
Int. J. Robust Nonlinear Control
,
24
(
16
), pp.
2473
2489
.10.1002/rnc.3004
7.
Chen
,
G.
, and
Lewis
,
F. L.
,
2011
, “
Distributed Adaptive Tracking Control for Synchronization of Unknown Networked Lagrange Systems
,”
IEEE Trans. Syst., Man, Cybern. B: Cybern.
,
41
(
3
), pp.
805
815
.10.1109/TSMCB.2010.2095497
8.
Fukao
,
T.
,
Nakagawa
,
H.
, and
Adachi
,
N.
,
2000
, “
Adaptive Tracking Control of a Nonholonomic Mobile Robot
,”
IEEE Trans. Rob. Autom.
,
16
(
5
), pp.
609
615
.10.1109/70.880812
9.
Dong
,
W. J.
,
2011
, “
Flocking of Multiple Mobile Robots Based on Backstepping
,”
IEEE Trans. Cybern.
,
41
(
2
), pp.
414
424
.10.1109/TSMCB.2010.2056917
10.
Yu
,
X.
, and
Liu
,
L.
,
2017
, “
Cooperative Control for Moving-Target Circular Formation of Nonholonomic Vehicles
,”
IEEE Trans. Autom. Control
,
62
(
7
), pp.
3448
3454
.10.1109/TAC.2016.2614348
11.
Kan
,
Z.
,
Klotz
,
J. R.
,
Shea
,
J. M.
,
Doucette
,
E. A.
, and
Dixon
,
W. E.
,
2017
, “
Decentralized Rendezvous of Nonholonomic Robots With Sensing and Connectivity Constraints
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
2
), p.
024501
.10.1115/1.4034745
12.
Miao
,
Z.
,
Liu
,
Y. H.
,
Wang
,
Y.
,
Guo
,
Y.
, and
Fierro
,
R.
,
2018
, “
Distributed Estimation and Control for Leader-Following Formations of Nonholonomic Mobile Robots
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1946
1954
.10.1109/TASE.2018.2810253
13.
Liu
,
L.
,
Yu
,
J.
,
Ji
,
J.
,
Miao
,
Z. H.
, and
Zhou
,
J.
,
2019
, “
Cooperative Adaptive Consensus Tracking for Multiple Nonholonomic Mobile Robots
,”
Int. J. Syst. Sci.
,
50
(
8
), pp.
1556
1567
.10.1080/00207721.2019.1617366
14.
Liu
,
L.
,
Guo
,
R.
,
Ji
,
J.
,
Miao
,
Z.
, and
Zhou
,
J.
,
2020
, “
Practical Consensus Tracking Control of Multiple Nonholonomic Wheeled Mobile Robots in Polar Coordinates
,”
Int. J. Robust Nonlinear Control
,
30
(
10
), pp.
3831
3847
.10.1002/rnc.4967
15.
Park
,
B. S.
,
Yoo
,
S. J.
,
Park
,
J. B.
, and
Choi
,
Y. H.
,
2009
, “
Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
207
214
.10.1109/TCST.2008.922584
16.
Du
,
H.
,
Wen
,
G.
,
Yu
,
X.
,
Li
,
S.
, and
Chen
,
M. Z.
,
2015
, “
Finite-Time Consensus of Multiple Nonholonomic Chained-Form Systems Based on Recursive Distributed Observer
,”
Automatica
,
62
, pp.
236
242
.10.1163/156855303322395172
17.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
, “
Robot Modeling and Control
,”
Ind. Robot.: An Int. J.
,
17
(
5
), pp.
709
737
.
18.
Djaidja
,
S.
, and
Wu
,
Q. H.
,
2015
, “
Stochastic Consensus of Leader-Following Multi-Agent Systems Under Additive Measurement Noises and Time-Delay
,”
Eur. J. Control
,
23
, pp.
55
61
.10.1016/j.ejcon.2015.03.002
19.
Li
,
T.
, and
Zhang
,
J. F.
,
2009
, “
Mean Square Average-Consensus Under Measurement Noises and Fixed Topologies: Necessary and Sufficient Conditions
,”
Automatica
,
45
(
8
), pp.
1929
1936
.10.1016/j.automatica.2009.04.017
20.
Sun
,
F.
,
Guan
,
Z. H.
,
Ding
,
L.
, and
Wang
,
Y. W.
,
2013
, “
Mean Square Average-Consensus for Multi-Agent Systems With Measurement Noise and Time Delay
,”
Int. J. Syst. Sci.
,
44
(
6
), pp.
995
1005
.10.1080/00207721.2011.652221
21.
Hu
,
J.
, and
Feng
,
G.
,
2010
, “
Distributed Tracking Control of Leader-Follower Multi-Agent Systems Under Noisy Measurement
,”
Automatica
,
46
(
8
), pp.
1382
1387
.10.1016/j.automatica.2010.05.020
22.
Huang
,
M.
, and
Manton
,
J. H.
,
2010
, “
Stochastic Consensus Seeking With Noisy and Directed Inter-Agent Communication: Fixed and Randomly Varying Topologies
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
235
241
.10.1109/TAC.2009.2036291
23.
Cheng
,
L.
,
Hou
,
Z. G.
,
Tan
,
M.
, and
Xu
,
W.
,
2011
, “
Necessary and Sufficient Conditions for Consensus of Double-Integrator Multi-Agent Systems With Measurement Noises
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1958
1963
.10.1109/TAC.2011.2139450
24.
Lv
,
Y.
,
Fu
,
J.
,
Wen
,
G.
,
Huang
,
T.
, and
Yu
,
X.
,
2020
, “
On Consensus of Multi-Agent Systems With Input Saturation: Fully Distributed Adaptive Anti-Windup Protocol Design Approach
,”
IEEE Trans. Control Network Syst.
,
7
(
3
), pp.
1127
1139
.10.1109/TCNS.2020.2964146
25.
Chen
,
T.
,
Liu
,
X.
, and
Lu
,
W.
,
2007
, “
Pinning Complex Networks by a Single Controller
,”
IEEE Trans. Circuits Syst.
,
54
(
6
), pp.
1317
1326
.10.1109/TCSI.2007.895383
26.
Liu
,
J.
,
Liu
,
X.
,
Xie
,
W. C.
, and
Zhang
,
H. T.
,
2011
, “
Stochastic Consensus Seeking With Communication Delays
,”
Automatica
,
47
(
12
), pp.
2689
2696
.10.1016/j.automatica.2011.09.005
27.
Jeffrey
,
S. R.
,
2006
, “
A first look at rigorous probability theory, A
,”
World Scientific Publishing Company
, Singapore.
28.
Øksendal
,
B.
,
2003
,
Stochastic Differential Equations, an Introduction With Applications
, 6th ed.,
Springer-Verlag
,
New York
.
You do not currently have access to this content.