Abstract

Due to the ability of handling the coupling property of multivariable control system, generalized predictive control (GPC) has been widely employed in process industry. However, the existing GPC method normally utilizes the frequency domain indices in the design procedure, which is not intuitive to the industrial end users. Therefore, a new GPC method with improved time domain performance is proposed for multiple-input-multiple-output system. First, the slope and rate of change of the slope of the system outputs are considered as two new weighting terms in the cost function of GPC such that the dynamic characteristics of the system can be better considered in the optimal control problem of the controller. Second, given the modified cost function, the resultant GPC algorithm is developed to improve the time domain performance of the system. Third, the convergence and stability of the closed-loop system under the proposed method are theoretically proved. Finally, the experimental results based on the variable air volume (VAV) air conditioning system show that the time domain performance indices, including overshoot and settling time, of the proposed method, have been improved by 68.75% and 66.67%, compared with the traditional GPC, showing the advantages of the new GPC method.

References

1.
Hill
,
E.
,
Gadsden
,
S.
, and
Biglarbegian
,
M.
,
2022
, “
Robust Nonlinear Model Predictive Control With Model Predictive Sliding Mode for Continuous-Time Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
3
), p. 031006.10.1115/1.4053026
2.
Berberich
,
J.
,
Köhler
,
J.
,
Müller
,
M.
, and
Allgöwer
,
F.
,
2021
, “
Data-Driven Model Predictive Control With Stability and Robustness Guarantees
,”
IEEE Trans. Autom. Control
,
66
(
4
), pp.
1702
1717
.10.1109/TAC.2020.3000182
3.
Taik
,
S.
, and
Kiss
,
B.
,
2021
, “
Demand Side Electric Energy Consumption Optimization in a Smart Household Using Scheduling and Model Predictive Temperature Control
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
6
), p.
061010
.10.1115/1.4049567
4.
Peccin
,
V.
,
Lima
,
D.
,
Flesch
,
R.
, and
Normey-Rico
,
J.
,
2021
, “
Fast Algorithms for Constrained Generalised Predictive Control With on-Line Optimisation
,”
IET Control Theory Appl.
,
15
(
4
), pp.
545
558
.10.1049/cth2.12060
5.
Xie
,
S.
,
Xie
,
Y.
,
Huang
,
T.
,
Gui
,
W.
, and
Yang
,
C.
,
2019
, “
Generalized Predictive Control for Industrial Processes Based on Neuron Adaptive Splitting and Merging RBF Neural Network
,”
IEEE Trans. Ind. Electron.
,
66
(
2
), pp.
1192
1202
.10.1109/TIE.2018.2835402
6.
Pawlowski
,
A.
,
Guzmán
,
J.
,
Normey-Rico
,
J. E.
, and
Berenguel
,
M.
,
2012
, “
Improving Feedforward Disturbance Compensation Capabilities in Generalized Predictive Control
,”
J. Process Control
,
22
(
3
), pp.
527
539
.10.1016/j.jprocont.2012.01.010
7.
Chang
,
Y. L.
, and
Tsai
,
C. C.
,
2011
, “
Adaptive Generalised Predictive Temperature Control for Air Conditioning Systems
,”
IET Control Theory Appl.
,
5
(
6
), pp.
813
822
.10.1049/iet-cta.2010.0085
8.
Qian
,
S.
, and
Liang
,
L.
,
2009
, “
Implicit Generalized Predictive Self-Tuning Control Algorithm for Multivariable System
,”
Autom. Technol. Appl.
,
03
(
3
), pp.
9
11
.10.3969/j.issn.1003-7241.2009.03.003
9.
Rodrigues
,
L. L.
,
Vilcanqui
,
O. A. C.
,
Conde D.
,
E. R.
,
Guerero
,
J. M
, and
Sguarezi Filho
,
A. J.
,
2020
, “
Generalized Predictive Control Applied to the DFIG Power Control Using State-Space Model and Voltage Constraints
,”
Electric Power Syst. Res.
,
182
, p.
106227
.10.1016/j.epsr.2020.106227
10.
Liu
,
D.
,
Zhang
,
N.
,
Jiang
,
L.
,
Zhao
,
X.-G.
, and
Duan
,
W.-F.
,
2020
, “
Nonlinear Generalized Predictive Control of the Crystal Diameter in CZ-Si Crystal Growth Process Based on Stacked Sparse Autoencoder
,”
IEEE Trans. Control Syst. Technol.
,
28
(
3
), pp.
1132
1139
.10.1109/TCST.2019.2898975
11.
Solís-Chaves
,
J. S.
,
Rodrigues
,
L. L.
,
Rocha-Osorio
,
C. M.
, and
Sguarezi Filho
,
A. J.
,
2019
, “
A Long-Range Generalized Predictive Control Algorithm for a DFIG Based Wind Energy System
,”
IEEE/CAA J. Autom. Sin.
,
6
(
5
), pp.
1209
1219
.10.1109/JAS.2019.1911699
12.
Bagheri
,
P.
, and
Sedigh
,
A. K.
,
2013
, “
Analytical Approach to Tuning of Model Predictive Control for First-Order Plus Dead Time Models
,”
IET Control Theory Appl.
,
7
(
14
), pp.
1806
1817
.10.1049/iet-cta.2012.0934
13.
Liu
,
C.
,
Wang
,
C.
,
Yin
,
Y.
,
Yang
,
P.
, and
Jiang
,
H.
,
2022
, “
Bi-Level Dispatch and Control Strategy Based on Model Predictive Control for Community Integrated Energy System Considering Dynamic Response Performance
,”
Appl. Energy
,
310
, p.
118641
.10.1016/j.apenergy.2022.118641
14.
Imai
,
A.
,
Oa
,
B.
,
Hm
,
A.
, and
Ms
,
C.
,
2021
, “
Nonlinear Generalized Predictive Controller Based on Ensemble of NARX Models for Industrial Gas Turbine Engine
,”
Energy
,
230
, p.
120700
.10.1016/j.energy.2021.120700
15.
Mouhou
,
A.
,
Badri
,
A.
,
Ballouk
,
A.
, and
Sayouti
,
Y.
,
2017
, “
Genetic Algorithms Optimization of Tuning Parameters of Generalized Predictive Control
,” 2017 International Conference on Electrical and Information Technologies (
ICEIT
),
IEEE
,
Rabat, Morocco
, Nov. 15–18, pp.
1
5
.10.1109/EITech.2017.8255281
16.
Thamallah
,
A.
,
Sakly
,
A.
, and
M'Sahli
,
F.
,
2022
, “
Multi-Objective Generalized Predictive Control for Switching Systems Under Unknown Switching Sequences
,”
ISA Trans.
,
126
, pp.
144
159
.10.1016/j.isatra.2021.07.042
17.
Sato
,
T.
,
Yamamoto
,
T.
,
Araki
,
N.
, and
Konishi
,
Y.
,
2014
, “
Performance-Adaptive Generalized Predictive Control-Based Proportional-Integral-Derivative Control System and Its Application
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
6
) p.
061003
.10.1115/1.4027923
18.
Ren
,
J.
,
Chen
,
Z.
,
Sun
,
M.
, and
Sun
,
Q.
,
2021
, “
Multi-Verse Optimizer Based PI-Type Active Disturbance Rejection Generalized Predictive Control Parameter Tuning for Ship Motion
,”
Optimal Control Appl. Methods
, pp.
1
23
.10.1002/oca.2818
19.
Ren
,
J.
,
Chen
,
Z.
,
Sun
,
M.
,
Sun
,
Q.
, and
Wang
,
Z.
,
2022
, “
Proportion Integral-Type Active Disturbance Rejection Generalized Predictive Control for Distillation Process Based on Grey Wolf Optimization Parameter Tuning
,”
Chin. J. Chem. Eng.
,
49
, pp.
234
244
.10.1016/j.cjche.2021.11.022
20.
Bordons
,
C.
, and
Camacho
,
E. F.
,
1998
, “
A Generalized Predictive Controller for a Wide Class of Industrial Processes
,”
IEEE Trans. Control Syst. Technol.
,
6
(
3
), pp.
372
387
.10.1109/87.668038
21.
Clarke
,
D. W.
, and
Mohtadi
,
C.
,
1989
, “
Properties of Generalized Predictive Control
,”
Automatica
,
25
(
6
), pp.
859
875
.10.1016/0005-1098(89)90053-8
22.
Chikh
,
L.
,
Poignet
,
P.
,
Pierrot
,
F.
, and
Michelin
,
M.
,
2010
, “
A Generalized Predictive Force Controller for Electropneumatic Cylinders
,”
IFAC Proc. Vol.
,
43
(
14
), pp.
1058
1063
.10.3182/20100901-3-IT-2016.00047
23.
He
,
N.
,
Liu
,
X.
,
Forbes
,
M.
,
Backström
,
J. U.
, and
Chen
,
T.
,
2018
, “
Robust Tuning of Cross-Directional Model Predictive Controllers for Paper-Making Processes
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1619
1634
.10.1109/TCST.2017.2731322
24.
He
,
N.
,
Xu
,
G.
, and
Zhang
,
M.
,
2021
, “
Automated GPC Tuning Based on Fuzzy Logic and Event Triggered Mechanism
,” 4th IEEE International Conference on Industrial Cyber-Physical Systems (
ICPS
), Victoria, BC, Canada, May 10–12, pp.
725
730
.10.1109/ICP S49255.2021.9468236
25.
Jiang
,
W.
,
2009
, “
On-Line Tuning of Setpoint Softening Factor for Model Predictive Controllers
,” Ph.D. thesis,
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University
,
Shanghai, China
.
26.
Li
,
G. Y. L.
,
2013
,
Neural⋅ Fuzzy⋅ Predictive Control and MATLAB Implementation
,
Publishing House of Electronics Industry
,
Beijing, China
.
27.
Wang
,
M.
,
Wang
,
Y.
,
Chai
,
T.
, and
Zhang
,
X.
,
2022
, “
External Generalized Predictive Cascade Control for Main Steam Temperature Based on Weight Factor Self-Regulating
,”
Acta Automatica Sinica
,
48
(2), pp. 418−433.10.16383/j.aas.c200195
28.
Camacho
,
E.
, and
Alba
,
C.
,
2013
,
Model Predictive Control
,
Springer Science & Business Media
,
London
.10.1007/978-0-85729-398-5
29.
Clarke
,
D.
, and
Gawthrop
,
P.
,
1975
, “
Self-Tuning Controller
,”
Proceedings of the Institution of Electrical Engineers
,
IET
,
122
(
9
), pp.
929
934
.10.1049/piee.1975.0252
30.
Ljung
,
L.
,
1987
, “
System Identification: Theory for the User
,”
Prentice Hall
,
Upper Saddle River
.
31.
Wang
,
J.
, and
Ren
,
Q.
,
2008
, “
Model Predictive Control and Case Simulation for Vav System
,”
J. Syst. Simul.
,
20
(
16
), pp.
4446
4450
.10.16182/j.cnki.joss.2008.16.063
You do not currently have access to this content.