Abstract

In this paper, we propose a method based on a two-stage algorithm to simultaneously identify the coefficients and fractional differentiation orders of fractional order systems (FOSs) with commensurate order. The proposed method adopts the fractional integral operational matrix of block pulse functions (BPFs) to convert the FOS to a linear parameter regression equation. Then, a two-stage algorithm is developed to identify the coefficients and orders. First, with the orders fixed, the coefficients are identified using the instrumental variable-based recursive least square algorithm. Then, with the identified coefficients fixed, the orders are estimated using the Gauss–Newton iterative algorithm. The above process iterates until the stop criterion is met. Two identification examples are given to verify the effectiveness of the proposed method.

References

1.
Liu
,
D. Y.
,
Gibaru
,
O.
,
Perruquetti
,
W.
, and
Laleg-Kirati
,
T. M.
,
2015
, “
Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment
,”
IEEE Trans. Autom. Control
,
60
(
11
), pp.
2945
2960
.10.1109/TAC.2015.2417852
2.
Liu
,
D. Y.
,
Zheng
,
G.
,
Boutat
,
D.
, and
Liu
,
H. R.
,
2017
, “
Non-Asymptotic Fractional Order Differentiator for a Class of Fractional Order Linear Systems
,”
Automatica
,
78
, pp.
61
71
.10.1016/j.automatica.2016.12.017
3.
Sun
,
H.
,
Chen
,
W.
,
Li
,
C.
, and
Chen
,
Y.
,
2010
, “
Fractional Differential Models for Anomalous Diffusion
,”
Phys. A: Stat. Mech. Appl.
,
389
(
14
), pp.
2719
2724
.10.1016/j.physa.2010.02.030
4.
Hu
,
M. H.
,
Li
,
Y. X.
,
Li
,
S. X.
,
Fu
,
C. Y.
,
Qin
,
D. T.
, and
Li
,
Z. H.
,
2018
, “
Lithium-Ion Battery Modeling and Parameter Identification Based on Fractional Theory
,”
Energy
,
165
(
13
), pp.
153
163
.10.1016/j.energy.2018.09.101
5.
Lay
,
L. L.
,
1998
, “
Identification Fréquentielle et Temporelle Par Modéle Non Entier
,” Ph.D. thesis,
Université Bordeaux I
, Talence, France.
6.
Lin
,
J.
,
2001
, “
Modélisation et Identification de Systèm Dordre Non Entier
,” Ph.D. thesis,
Université de Poitier
, France.
7.
Cois
,
O.
,
2020
, “
Systèmes Linéaires Non Entiers et Identification Par Modèle Non Entier: Application en Thermique
,” Ph.D. thesis,
Université Bordeaux I
, Talence.
8.
Malti
,
R.
,
Victor
,
S.
, and
Oustaloup
,
A.
,
2008
, “
Advances in System Identification Using Fractional Models
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), pp.
764
786
.10.1115/1.2833910
9.
Aoun
,
M.
,
Amairi
,
M.
,
Lassoued
,
Z.
,
Najar
,
S.
, and
Abdelkrim
,
M. N.
,
2011
, “
An Ellipsoidal Set-Membership Parameter Estimation of Fractional Orders Systems
,”
International Multi-Conference on Systems, Signals and Devices
,
IEEE
, Sousse, Tunisia, Mar. 22–25, pp.
1
6
.10.1109/SSD.2011.5767416
10.
Amairi
,
M.
,
2015
, “
Recursive Set-Membership Parameter Estimation Using Fractional Model
,”
Circuits Syst Signal Process
,
34
(
12
), pp.
3757
3788
.10.1007/s00034-015-0036-2
11.
Amairi
,
M.
,
Aoun
,
M.
,
Najar
,
S.
, and
Abdelkrim
,
M. N.
,
2012
, “
Set Membership Parameter Estimation of Linear Fractional Systems Using Parallelotopes
,”
International Multi-Conference on Systems
,
IEE, Chemnitz, Germany, Mar. 20–23, pp. 1–6
.
12.
Liu
,
D. Y.
,
Laleg-Kirati
,
T. M.
,
Gibaru
,
O.
, and
Perruquetti
,
W.
,
2013
, “
Identification of Fractional Order Systems Using Modulating Functions Method
,”
American Control Conference,
Washington, DC, June 17–19, pp.
1679
1684
.10.1109/ACC.2013.6580077
13.
Dai
,
Y.
,
Wei
,
Y.
,
Hu
,
Y.
, and
Wang
,
Y.
,
2016
, “
Modulating Function-Based Identification for Fractional Order Systems
,”
Neurocomputing
,
173
(
3
), pp.
1959
1966
.10.1016/j.neucom.2015.07.002
14.
Gao
,
Z.
,
2017
, “
Modulating Function-Based System Identification for a Fractional-Order System With a Time Delay Involving Measurement Noise Using Least-Squares Method
,”
Int. J. Syst. Sci.
,
48
(
7
), pp.
1460
1471
.10.1080/00207721.2016.1265159
15.
Aldoghaither
,
A.
,
Liu
,
D. Y.
, and
Laleg-Kirati
,
T. M.
,
2015
, “
Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space Fractional Advection Dispersion Equation
,”
SIAM J. Sci. Comput.
,
37
(
6
), pp.
A2813
2839
.10.1137/15M1008993
16.
Wei
,
Y. Q.
,
Liu
,
D. Y.
,
Boutat
,
D.
,
Liu
,
H. R.
, and
Wu
,
Z. H.
,
2021
, “
Modulating Functions Based Model-Free Fractional Order Differentiators Using a Sliding Integration Window
,”
Automatica
,
130
, p.
109679
.10.1016/j.automatica.2021.109679
17.
Tang
,
Y.
,
Liu
,
H.
,
Wang
,
W.
,
Lian
,
Q.
, and
Guan
,
X.
,
2015
, “
Parameter Identification of Fractional Order Systems Using Block Pulse Functions
,”
Signal Process.
,
107
, pp.
272
281
.10.1016/j.sigpro.2014.04.011
18.
Tang
,
Y.
,
Li
,
N.
,
Liu
,
M.
,
Lu
,
Y.
, and
Wang
,
W.
,
2017
, “
Identification of Fractional Order Systems With Time Delays Using Block Pulse Functions
,”
Mech. Syst. Signal Process.
,
91
, pp.
382
394
.10.1016/j.ymssp.2017.01.008
19.
Lu
,
Y.
,
Tang
,
Y. G.
,
Zhang
,
X. G.
, and
Wang
,
S. E.
,
2020
, “
Parameter Identification of Fractional Order Systems With Nonzero Initial Conditions Based on Block Pulse Functions
,”
Measurement
,
158
(
23
), p.
107684
.10.1016/j.measurement.2020.107684
20.
Kajal
,
K.
,
Utkal
,
M.
, and
Jito
,
V.
,
2018
, “
A Novel Approach of Fractional-Order Time Delay System Modeling Based on Haar Wavelet
,”
ISA Trans.
,
80
, pp.
371
380
.10.1016/j.isatra.2018.07.019
21.
Li
,
Y.
,
Meng
,
X.
,
Zheng
,
B.
, and
Ding
,
Y.
,
2015
, “
Parameter Identification of Fractional Order Linear System Based on Haar Wavelet Operational Matrix
,”
ISA Trans.
,
59
, pp.
79
84
.10.1016/j.isatra.2015.08.011
22.
Lu
,
Y.
,
Zhang
,
J.
, and
Tang
,
Y. G.
,
2020
, “
Parameter Identification of Fractional Order Systems Using a Collocation Method Based on Hybrid Functions
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
8
), p.
081007
.10.1115/1.4046551
23.
Bouafoura
,
M. K.
, and
Braiek
,
N. B.
,
2010
, “
Block Pulse-Based Techniques for Modelling and Synthesis of Non-Integer Systems
,”
Int. J. Syst. Sci.
,
41
(
5
), pp.
487
499
.10.1080/00207720903042962
24.
Young
,
P.
,
1970
, “
An Instrumental Variable Method for Real Time Identification of Noisy Process
,”
Automatica
,
6
(
2
), pp.
271
287
.10.1016/0005-1098(70)90098-1
25.
Victor
,
S.
,
Malti
,
R.
,
Garnier
,
H.
, and
Oustaloup
,
A.
,
2013
, “
Parameter and Differentiation Order Estimation in Fractional Models
,”
Automatica
,
49
(
4
), pp.
926
935
.10.1016/j.automatica.2013.01.026
26.
Fahim
,
S.
,
Ahmed
,
S.
, and
Imtiaz
,
S.
,
2018
, “
Fractional Order Model Identification Using the Sinusoidal Input
,”
ISA Trans.
,
83
, pp.
35
41
.10.1016/j.isatra.2018.09.009
You do not currently have access to this content.