Abstract

This paper presents a novel model-free adaptive sliding mode control (MFA-SMC) algorithm, which is employed to actively adjust the amplitude and frequency of spindle speed variation (SSV) for chatter suppression in turning. The SSV technique is effective for mitigating regenerative chatter, which however is not widely applied due to its poor adaptability to time-varying characteristics of machining dynamics and cutting conditions. The online adjustment of SSV parameters has been reported in previous works, whereas the proportional integral differential (PID)-type controller used cannot compensate for the interactions when abruptly changing the reference input and the parameter tuning procedure consumes much time. The proposed method integrates the model-free adaptive control (MFAC) with the global sliding mode control (GSMC). The method is data-driven and only dependent on the measured input/output data of the cutting process in this paper, which are the normalized wavelet packet entropy and SSV parameters, respectively. The bounded-input bounded-output stability and the tracking error convergence of the proposed control algorithm are guaranteed by theoretical analysis. The effectiveness of the proposed chatter suppression method is investigated with numerical simulations. Finally, experimental results demonstrate that chatter vibration under different cutting conditions can be effectively mitigated by the proposed method.

References

1.
Tarng
,
Y. S.
,
Kao
,
J. Y.
, and
Lee
,
E. C.
,
2000
, “
Chatter Suppression in Turning Operations With a Tuned Vibration Absorber
,”
J. Mater. Process. Technol.
,
105
(
1–2
), pp.
55
60
.10.1016/S0924-0136(00)00585-9
2.
Siddhpura
,
M.
, and
Paurobally
,
R.
,
2012
, “
A Review of Chatter Vibration Research in Turning
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
27
47
.10.1016/j.ijmachtools.2012.05.007
3.
Bai
,
K.
,
Qin
,
J.
,
Lee
,
K. M.
, and
Hao
,
B.
,
2019
, “
Design and Chatter Prediction Analysis of a Duplex Face Turning Machine for Manufacturing Disk-Like Workpieces
,”
Int. J. Mach. Tools Manuf.
,
140
, pp.
12
19
.10.1016/j.ijmachtools.2019.01.006
4.
Wang
,
M.
,
Zan
,
T.
,
Yang
,
Y.
, and
Fei
,
R.
,
2010
, “
Design and Implementation of Nonlinear TMD for Chatter Suppression: An Application in Turning Processes
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
474
479
.10.1016/j.ijmachtools.2010.01.004
5.
Nechak
,
L.
,
2021
, “
Robust Nonlinear Control of Mode-Coupling-Based Vibrations by Using High-Gain Observer and Sliding-Mode Controller
,”
ASME J. Dyn. Syst., Meas. Control
,
143
(
2
), p.
021003
.10.1115/1.4048356
6.
Huang
,
T.
,
Chen
,
Z.
,
Zhang
,
H.
, and
Ding
,
H.
,
2015
, “
Active Control of an Active Magnetic Bearings Supported Spindle for Chatter Suppression in Milling Process
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111003
.10.1115/1.4030841
7.
van Dijk
,
N. J. M.
,
Doppenberg
,
E. J. J.
,
Faassen
,
R. P. H.
,
Wouw
,
N. van de
,
J. A. J.
,
Oosterling
., and
H.
,
Nijmeijer
,
2010
, “
Automatic in-Process Chatter Avoidance in the High-Speed Milling Process
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
031006
.10.1115/1.4000821
8.
Albertelli
,
P.
,
Musletti
,
S.
,
Leonesio
,
M.
,
Bianchi
,
G.
, and
Monno
,
M.
,
2012
, “
Spindle Speed Variation in Turning: Technological Effectiveness and Applicability to Real Industrial Cases
,”
Int. J. Adv. Manuf. Technol
,
62
(
1–4
), pp.
59
67
.10.1007/s00170-011-3790-8
9.
Urbikain
,
G.
,
Olvera
,
D.
,
de Lacalle
,
L.
, and
Elías-Zúñiga
,
A.
,
2016
, “
Spindle Speed Variation Technique in Turning Operations: Modeling and Real Implementation
,”
J. Sound Vib.
,
383
, pp.
384
396
.10.1016/j.jsv.2016.07.033
10.
Wu
,
D.
, and
Chen
,
K.
,
2010
, “
Chatter Suppression in Fast Tool Servo-Assisted Turning by Spindle Speed Variation
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1038
1047
.10.1016/j.ijmachtools.2010.09.001
11.
Al-Regib
,
E.
,
Ni
,
J.
, and
Lee
,
S. H.
,
2003
, “
Programming Spindle Speed Variation for Machine Tool Chatter Suppression
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1229
1240
.10.1016/S0890-6955(03)00126-3
12.
Soliman
,
E.
, and
Ismail
,
F.
,
1997
, “
Chatter Suppression by Adaptive Speed Modulation
,”
Int. J. Mach. Tools Manuf.
,
37
(
3
), pp.
355
369
.10.1016/0890-6955(95)00084-4
13.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2016
, “
Stability Analysis of Milling Processes With Periodic Spindle Speed Variation Via the Variable-Step Numerical Integration Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114501
.10.1115/1.4033043
14.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2018
, “
Online Chatter Suppression in Turning by Adaptive Amplitude Modulation of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
121003
.10.1115/1.4041248
15.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2020
, “
Active Chatter Suppression in Turning by Simultaneous Adjustment of Amplitude and Frequency of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021004
.10.1115/1.4045618
16.
Hou
,
Z.
, and
Huang
,
W.
,
1997
, “
The Model-Free Learning Adaptive Control of a Class of SISO Nonlinear Systems
,”
Proceedings of the IEEE American Control Conference
, Albuquerque, NM
, June 6, pp.
343
344
.10.1109/ACC.1997.611815
17.
Hou
,
Z.
, and
Jin
,
S.
,
2011
, “
Data-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
,”
IEEE Trans. Neural Network
,
22
(
12
), pp.
2173
2188
.10.1109/TNN.2011.2176141
18.
Chen
,
Y.
,
Li
,
H.
,
Hou
,
L.
,
Wang
,
J.
, and
Bu
,
X.
,
2018
, “
An Intelligent Chatter Detection Method Based on EEMD and Feature Selection With Multi-Channel Vibration Signals
,”
Measurement
,
127
, pp.
356
365
.10.1016/j.measurement.2018.06.006
19.
Hou
,
Z.
,
Chi
,
R.
, and
Gao
,
H.
,
2017
, “
An Overview of Dynamic-Linearization-Based Data-Driven Control and Applications
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
4076
4090
.10.1109/TIE.2016.2636126
20.
Li
,
H.
,
Ning
,
X.
, and
Li
,
W.
,
2017
, “
Implementation of a MFAC Based Position Sensorless Drive for High Speed BLDC Motors With Nonideal Back EMF
,”
ISA Trans.
,
67
, pp.
348
355
.10.1016/j.isatra.2016.11.014
21.
Xu
,
D.
,
Jiang
,
B.
, and
Liu
,
F.
,
2016
, “
Improved Data Driven Model Free Adaptive Constrained Control for a Solid Oxide Fuel Cell
,”
IET Control Theory Appl.
,
10
(
12
), pp.
1412
1419
.10.1049/iet-cta.2015.0841
22.
Wan
,
S.
,
Li
,
X.
,
Su
,
W.
,
Yuan
,
J.
, and
Hong
,
J.
,
2020
, “
Active Chatter Suppression for Milling Process With Sliding Mode Control and Electromagnetic Actuator
,”
Mech. Syst. Signal Process
,
136
, p.
106528
.10.1016/j.ymssp.2019.106528
23.
Moradi
,
H.
,
Bakhtiari-Nejad
,
F.
,
Movahhedy
,
M. R.
, and
Ahmadian
,
M. T.
,
2010
, “
Nonlinear Behaviour of the Regenerative Chatter in Turning Process With a Worn Tool: Forced Oscillation and Stability Analysis
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1050
1066
.10.1016/j.mechmachtheory.2010.03.014
24.
Tyler
,
C. T.
,
Christopher
,
Troutman
,
J. R.
, and
Schmitz
,
T. L.
,
2016
, “
A Coupled Dynamics, Multiple Degree of Freedom Process Damping Model, Part 1: Turning
,”
Precis. Eng.
,
46
, pp.
65
72
.10.1016/j.precisioneng.2016.03.017
25.
Yamato
,
S.
,
Ito
,
T.
,
Matsuzaki
,
H.
,
Fujita
,
J.
, and
Kakinuma
,
Y.
,
2020
, “
Self-Acting Optimal Design of Spindle Speed Variation for Regenerative Chatter Suppression Based on Novel Analysis of Internal Process Energy Behavior
,”
Int. J. Mach. Tools Manuf.
,
159
, p.
103639
.10.1016/j.ijmachtools.2020.103639
26.
Sun
,
Y.
, and
Xiong
,
Z.
,
2017
, “
High-Order Full-Discretization Method Using Lagrange Interpolation for Stability Analysis of Turning Processes With Stiffness Variation
,”
J. Sound Vib.
,
386
, pp.
50
64
.10.1016/j.jsv.2016.08.039
27.
Brecher
,
C.
,
Esser
,
M.
, and
Witt
,
S.
,
2009
, “
Interaction of Manufacturing Process and Machine Tool
,”
CIRP Ann.-Manuf. Technol.
,
58
(
2
), pp.
588
607
.10.1016/j.cirp.2009.09.005
28.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
371
374
.10.1016/j.cirp.2008.03.048
29.
Yilmaz
,
A.
,
Al-Regib
,
E.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
208
216
.10.1115/1.1378794
30.
Kalinski
,
K. J.
, and
Galewski
,
M. A.
,
2011
, “
Chatter Vibration Surveillance by the Optimal-Linear Spindle Speed Control
,”
Mech. Syst. Signal Process.
,
25
(
1
), pp.
383
399
.10.1016/j.ymssp.2010.09.005
31.
Hou
,
Z.
, and
Jin
,
S.
,
2013
,
Model Free Adaptive Control: Theory and Applications
,
CRC Press
,
Boca Raton, FL
.
32.
Mobayen
,
S.
,
2015
, “
An Adaptive Fast Terminal Sliding Mode Control Combined With Global Sliding Mode Scheme for Tracking Control of Uncertain Nonlinear Third-Order Systems
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
599
610
.10.1007/s11071-015-2180-4
33.
Liu
,
W.
,
Xu
,
G.
, and
Jiang
,
X.
,
2017
, “
Discrete Global Sliding Mode Control for Time-Delay Carbon Fiber Multilayer Diagonal Loom
,”
IEEE Access
,
5
, pp.
15326
15331
.10.1109/ACCESS.2017.2734805
34.
Ma
,
H.
,
Wu
,
J.
, and
Xiong
,
Z.
,
2016
, “
Discrete-Time Sliding-Mode Control With Improved Quasi-Sliding-Mode Domain
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6292
6304
.10.1109/TIE.2016.2580531
35.
Hou
,
Z.
, and
Jin
,
S.
,
2011
, “
A Novel Data-Driven Control Approach for a Class of Discrete-Time Nonlinear Systems
,”
IEEE Trans. Contr. Syst. Technol.
,
19
(
6
), pp.
1549
1558
.10.1109/TCST.2010.2093136
36.
Hou
,
Z.
, and
Bu
,
X.
,
2011
, “
Model Free Adaptive Control With Data Dropouts
,”
Expert. Syst.
.,
38
(
8
), pp.
10709
10717
.10.1016/j.eswa.2011.01.158
37.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2020
, “
Adaptive Removal of Time-Varying Harmonics for Chatter Detection in Thin-Walled Turning
,”
Int. J. Adv. Manuf. Technol.
,
106
(
1–2
), pp.
519
531
.10.1007/s00170-019-04492-6
38.
Zhang
,
H.
, and
Ni
,
J.
,
2010
, “
Internal Energy Based Analysis on Mechanism of Spindle Speed Variation for Regenerative Chatter Control
,”
J. Vib. Control
,
16
(
2
), pp.
281
301
.10.1177/1077546309103562
39.
Otto
,
A.
, and
Radons
,
G.
,
2013
, “
Application of Spindle Speed Variation for Chatter Suppression in Turning
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
2
), pp.
102
109
.10.1016/j.cirpj.2013.02.002
40.
Insperger
,
T.
, and
Stepan
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
.10.1177/1077546304044891
41.
Qin
,
C.
,
Tao
,
J.
,
Xiao
,
D.
,
Shi
,
H.
,
Li
,
B.
, and
Liu
,
C.
,
2020
, “
A Novel Chebyshev-Wavelet-Based Approach for Accurate and Fast Prediction of Milling Stability
,”
Precis. Eng.
,
62
, pp.
244
255
.10.1016/j.precisioneng.2019.11.016
42.
Zhang
,
H.
,
Wu
,
Y.
,
He
,
D.
, and
Zhao
,
H.
,
2015
, “
Model Predictive Control to Mitigate Chatters in Milling Processes With Input Constraints
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
54
61
.10.1016/j.ijmachtools.2015.01.002
43.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2019
, “
Dual-Mode Type Algorithm for Chatter Detection in Turning Considering Beat Vibration
,”
Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics
, Hong Kong, July 8–13, pp.
654
659
.10.1109/AIM.2019.8868723
You do not currently have access to this content.