Abstract

In this paper, we show how autonomous vehicles performing a certain task can be controlled from one command center in order to achieve certain goals. The command center provides individual feedback gains to each vehicle in the form of one compounded feedback gain that in fact carries feedback gain information for each individual vehicle. Vehicles may be of different nature: satellites, cars, tanks, drowns, robots, unmanned aircraft, underwater vehicles, and ships. It is assumed that their dynamic is weakly coupled, namely, dynamics of each individual vehicle is weakly coupled to dynamics of all other vehicles and that they have the same control input. The weak coupling among the vehicles is represented either by physical interactions among vehicles or coordinating or communication signals. The results obtained are applicable to vehicles having different mathematical linear/linearized state space models. In the case when no interaction/coordination/communication among vehicles is present, and all feedback signals come from the command center (central controller) controller, the vehicle mathematical models can be identical. An important feature of the presented results is that different local feedback controllers can be facilitated for different vehicles using a unique global feedback controller signal designed by the command center. In this paper, we will consider cases of two and three vehicles, but the presented multistage feedback design methodology can be potentially extended to N vehicles. The presentation is done in continuous time. Similar derivations hold in the discrete-time domain.

References

1.
Walton
,
C.
,
Kaminer
,
I.
,
Dobrokhodov
,
V.
, and
Jones
,
K. D.
,
2018
, “
Alternative Strategies for Optimal Unmanned Aerial Vehicle Thermaling
,”
J. Aircr.
,
55
(
6
), pp.
2347
2356
.10.2514/1.C035018
2.
Quan
,
Q.
,
2017
,
Introduction to Multicoper Design and Control
,
Springer
,
Singapore
.
3.
Stevens
,
B. L.
, and
Lewis
,
F.
,
2015
,
Aircraft Control and Simulation: Controls Design, and Autonomous Systems
,
Wiley-Blackwell
,
Hoboken, NJ
.
4.
Nomani
,
K.
,
Kartidjo
,
M.
,
Yoon
,
K. J.
, and
Budiyono
,
A.
,
2013
,
Autonomous Control Systems and Vehicles Intelligent Unmanned Systems
,
Springer
,
Tokyo
.
5.
Raptis
,
I. A.
,
Valavanis
,
K. P.
, and
Vachtsevanos
,
G. J.
,
2012
, “
Linear Tracking Control for Small-Scale Unmanned Helicopters
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
995
1010
.10.1109/TCST.2011.2158213
6.
Naidoo
,
Y.
,
Stopforth
,
R.
, and
Bright
,
G.
,
2011
, “
Quad-Rotor Unmanned Aerial Hehicle Helicopter Modelling and Control
,”
Int. J. Adv. Rob. Syst.
,
8
(
4
), pp.
45
149
.10.5772/45710
7.
Veigas
,
D.
,
Pedro
,
B.
, and
Oliviera
,
P.
,
2018
, “
Discrete-Time Distributed Kalman Filter Design for Formations of Autonomous Vehicles
,”
Control Eng. Pract.
,
75
, pp.
55
68
.10.1016/j.conengprac.2018.03.014
8.
Kurak
,
S.
, and
Hodzic
,
M.
,
2018
, “
Control and Estimation of a Quadrcopter Dynamical Model
,”
Periodicals Eng. Natural Sci.
,
6
(
1
), pp.
63
75
.10.21533/pen.v6i1.164
9.
Kim
,
J.-H.
, and
Lal
,
S.
,
2015
, “
Explicit Solutions to Separable Problems in Optimal Cooperative Control
,”
IEEE Trans. Autom. Control
,
60
(
5
), pp.
1304
1319
.10.1109/TAC.2014.2378931
10.
Kaynama
,
S.
, and
Oishi
,
M.
,
2013
, “
A modified Riccati Transformation for Decentralized Computation of the Viability Kernel Under LTI Dynamics
,”
IEEE Trans. Autom. Control
,
58
(
11
), pp.
2878
2892
.10.1109/TAC.2013.2272152
11.
Morris
,
K.
,
2011
, “
Linear-Quadratic Optimal Actuator Location
,”
IEEE Trans. Autom. Control
,
56
(
1
), pp.
113
124
.10.1109/TAC.2010.2052151
12.
Langbort
,
C.
, and
Delvenne
,
J.-C.
,
2010
, “
Distributed Design Methods for Linear Quadratic Control and Their Limitations
,”
IEEE Trans. Autom. Control
,
55
(
9
), pp.
2085
2093
.10.1109/TAC.2010.2044270
13.
Borrelli
,
F.
, and
Keviczky
,
T.
,
2008
, “
Distributed LQR Design for Identical Dynamically Decoupled Systems
,”
IEEE Trans. Autom. Control
,
53
(
8
), pp.
1901
1912
.10.1109/TAC.2008.925826
14.
Radisavljevic
,
V.
,
2006
, “
Simple Practical Classical-H2 Optimal Robust Controller
,”
AIAA Guid., Dyn., Control
,
29
, pp.
1417
1420
.10.2514/1.20989
15.
Radisavljevic-Gajic
,
V.
, and
Rose
,
P.
,
2014
, “
A New Two Stage Design of Feedback Controllers for a Hydrogen Gas Reformer
,”
Int. J. Hydrogen Energy
,
39
(
22
), pp.
11738
11748
.10.1016/j.ijhydene.2014.05.138
16.
Radisavljevic-Gajic
,
V.
,
2015
, “
A Simplified Two-Stage Design of Linear Discrete-Time Feedback Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p. 014506.10.1115/1.4028153
17.
Radisavljevic-Gajic
,
V.
,
2015
, “
Two-Stage Feedback Design for a Class of Linear Discrete-Time Systems With Slow and Fast Modes
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
8
), p.
086502
.10.1115/1.4030088
18.
Radisavljevic-Gajic
,
V.
, and
Milanovic
,
M.
,
2016
, “
Three-Stage Feedback Controller Design With Application to a Three-Time Scale Fuel Cell System
,”
ASME
Paper No. DSCC 2016-9806.10.1115/DSCC2016-9806
19.
Radisavljevi-Gajic
,
V.
,
Milanovic
,
M.
, and
Clayton
,
G.
,
2017
, “
Three-Stage Feedback Controller Design With Applications to Three Time-Scale Linear Control Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
10
), p. 104502.10.1115/1.4036408
20.
Radisavljevic
,
V.
,
Milanovic
,
M.
, and
Rose
,
P.
,
2019
,
Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems With Applications to Fuel Cells
,
Springer
,
Cham, Switzerland
.
21.
Kokotovic
,
P.
,
Khalil
,
H.
, and
O'Reilly
,
J.
,
1999
,
Singularly Perturbed Control Systems: Analysis and Design
,
SIAM Publishers
,
Philadelphia, PA
.
22.
Ghasemi
,
M.
, and
Song
,
X.
,
2019
, “
Control and Powertrain Management for Multi-Autonomous Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
7
), p. 071015.10.1115/1.4043110
23.
He
,
D.
,
Shi
,
Y.
, and
Song
,
X.
,
2019
, “
Wiegh-Free Multi-Objective Predictive Cruise Control of Autonomous Vehicles in Integrated Perturbation Analysis and Sequential Quadratic Programming Optimization Framework
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
9
), p. 091015.10.1115/1.4043270
24.
Viana
,
I. B.
,
Kanchwala
,
H.
,
Ahiska
,
K.
, and
Aouf
,
N.
,
2021
, “
A Comparison of Trajectory Planning and Control Frameworks for Cooperative Autonomous Driving
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
7
), p. 071002.10.1115/1.4049554
25.
Boyle
,
S.
, and
Stockar
,
S.
,
2022
, “
Multi-Time-Scale Engine and Powertrain Control for Autonomous Vehicles Via Lagrange Multipliers
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
1
), p. 011103.10.1115/1.4052766
26.
Deshpande
,
S. R.
,
Gupta
,
S.
,
Gupta
,
A.
, and
Canova
,
M.
,
2022
, “
Real-Time Ecodriving Control in Electrified Connected and Autonomous Vehicles Using Approximate Dynamic Programming
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
1
), p. 011111.10.1115/1.4053292
27.
Ayberk
,
U. I.
, and
Oncu
,
S.
,
2022
, “
Design of a Multi-Objective Lateral Controller for Highly Automated Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
10
), p.
101104
.10.1115/1.4054963
28.
Ge
,
L.
,
Zhao
,
Y.
,
Zhong
,
S.
,
Shan
,
Z.
,
Ma
,
F.
,
Guo
,
K.
, and
Han
,
Z.
,
2022
, “
Motion Control of Autonomous Vehicles Based on Offset Free Model Predictive Control Methods
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
11
), p. 111003.10.1115/1.4055166
29.
Jin
,
L.
,
Cicic
,
M.
,
Johansson
,
K. H.
, and
Amin
,
S.
,
2021
, “
Analysis and Design of Vehicle Platooning Operations on Mixed-Traffic Highways
,”
IEEE Trans. Autom. Control
,
66
(
10
), pp.
4715
4730
.10.1109/TAC.2020.3034871
30.
Bagherzadeh
,
M.
,
Savehshemshaki
,
S.
, and
Lucia
,
W.
,
2022
, “
Guaranteed Collision-Free Reference Tracking in Constrained Multi Unmanned Vehicle Systems
,”
IEEE Trans. Autom. Control
,
67
(
6
), pp.
3083
3089
.10.1109/TAC.2021.3093280
31.
Cichella
,
V.
,
Kaminer
,
I.
,
Walton
,
C.
,
Hovakimyan
,
N.
, and
Pascoal
,
A. M.
,
2021
, “
Optimal Vehicle Motion Planningh Using Bernstein Approximations
,”
IEEE Trans. Autom. Control
,
66
(
4
), pp.
1453
1467
.10.1109/TAC.2020.2999329
32.
Lee
,
S.-H.
, and
Chung
,
C. C.
,
2021
, “
Autonomous-Driving Vehicle Control With Composite Velocity Profile Planning
,”
IEEE Trans. Control Syst. Technol.
,
29
(
5
), pp.
2079
2091
.10.1109/TCST.2020.3029713
33.
Gajic
,
Z.
,
Lim
,
M.-T.
,
Skataric
,
D.
,
Su
,
W.-C.
, and
Kecman
,
V.
,
2009
,
Optimal Control: Weakly Coupled Systems and Applications
,
CRC Press Taylor & Francis Group
,
Boca Raton, FL
.
34.
Chen
,
T.
,
2012
,
Linear System Theory and Design
,
Oxford University Press
,
Oxford, UK
.
35.
Medanic
,
J.
,
1982
, “
Geometric Properties and Invariant Manifolds of the Riccati Equation
,”
IEEE Trans. Autom. Control
,
27
(
3
), pp.
670
677
.10.1109/TAC.1982.1102989
36.
Gao
,
Y.-H.
, and
Bai
,
Z.-Z.
,
2011
, “
On Inexact Newton Methods Based on Doubling Iteration Scheme for Non-Symmetric Algebraic Riccati Equations
,”
Numer. Linear Algebra Appl.
,
18
(
3
), pp.
325
341
.10.1002/nla.727
37.
Graham
,
R.
,
Knuth
,
D.
, and
Patashnik
,
O.
,
1989
,
Concrete Mathematics
,
Addison-Wesley
,
Reading, MA
.
38.
Simoncini
,
S.
,
2016
, “
Computational Methods for Linear Matrix Equations
,”
SIAM Rev.
,
58
(
3
), pp.
377
441
.10.1137/130912839
39.
Kato
,
T.
,
2011
,
A Short Introduction to Perturbation Theory for Linear Operators
,
Springer
,
New York
.
40.
Bingulac
,
S.
, and
Van Landingham
,
H.
,
1993
,
Algorithms for Computer Aided Design of Multivariable Control Systems
,
Marcel Dekker
,
New York
.
41.
Dorf
,
R.
, and
Bishop
,
R.
,
2017
,
Modern Control Systems
,
Pearson
,
Hoboken, NJ
.
42.
Kuehn
,
C.
,
2015
,
Multiple Time Scale Dynamics
,
Springer
,
Cham, Switzerland
.
You do not currently have access to this content.