Abstract

This study focuses on the lateral safety of autonomous vehicles. The aim is to provide greater safety margins for the motion controller under hazardous conditions by improving the planning methods. The proposed lateral planning method employs a hierarchical structure. First, a graph search method that considers road curvature is presented. This method benefits from the design of jump nodes and can generate a safe corridor in real-time by backtracking. Next, a concise and effective optimization problem is constructed in the Frenet frame. It is designed to optimize the path by incorporating the peak, integral, and differential of curvature into the objective function. By solving this problem using CasADi, the path within the safe corridor is obtained. Finally, the proposed planning method is combined with a model predictive motion controller and tested through simulation and experimentation on a real vehicle platform. This planning method has good scalability, adaptability, and real-time performance. Simulation and experimental results show that this method can help avoid exceeding lateral limits of road surface friction, improve path-following accuracy, and enhance the safety of autonomous vehicles in dangerous conditions.

Framework of MinCP for autonomous driving

Framework of MinCP for autonomous driving

Close modal

References

1.
Chen
,
L.
,
Li
,
Y.
,
Huang
,
C.
,
Li
,
B.
,
Xing
,
Y.
,
Tian
,
D.
,
Li
,
L.
, et al.,
2023
, “
Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys
,”
IEEE Trans. Intell. Veh.
,
8
(
2
), pp.
1046
1056
.10.1109/TIV.2022.3223131
2.
Claussmann
,
L.
,
Revilloud
,
M.
,
Gruyer
,
D.
, and
Glaser
,
S.
,
2020
, “
A Review of Motion Planning for Highway Autonomous Driving
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
5
), pp.
1826
1848
.10.1109/TITS.2019.2913998
3.
Subosits
,
J. K.
, and
Gerdes
,
J. C.
,
2021
, “
Impacts of Model Fidelity on Trajectory Optimization for Autonomous Vehicles in Extreme Maneuvers
,”
IEEE Trans. Intell. Veh.
,
6
(
3
), pp.
546
558
.10.1109/TIV.2021.3051325
4.
Dempster
,
R.
,
Al-Sharman
,
M.
,
Rayside
,
D.
, and
Melek
,
W.
,
2023
, “
Real-Time Unified Trajectory Planning and Optimal Control for Urban Autonomous Driving Under Static and Dynamic Obstacle Constraints
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
New York, May 29–June 2, pp.
10139
10145
.10.1109/ICRA48891.2023.10160577
5.
Maitland
,
A.
, and
McPhee
,
J.
,
2018
,
Towards Integrated Planning and Control of Autonomous Vehicles Using Nested MPCs
, ASME Paper No. DSCC2018-9224.10.1115/DSCC2018-9224
6.
Yurtsever
,
E.
,
Lambert
,
J.
,
Carballo
,
A.
, and
Takeda
,
K.
,
2020
, “
A Survey of Autonomous Driving: Common Practices and Emerging Technologies
,”
IEEE Access
,
8
, pp.
58443
58469
.10.1109/ACCESS.2020.2983149
7.
Zhang
,
Y.
,
Sun
,
H.
,
Zhou
,
J.
,
Pan
,
J.
,
Hu
,
J.
, and
Miao
,
J.
,
2020
, “
Optimal Vehicle Path Planning Using Quadratic Optimization for Baidu Apollo Open Platform
,”
IEEE Intelligent Vehicles Symposium (IV)
,
Las Vegas, NV, Oct. 19–Nov. 13, pp.
978
984
.10.1109/IV47402.2020.9304787
8.
Kato
,
S.
,
Tokunaga
,
S.
,
Maruyama
,
Y.
,
Maeda
,
S.
,
Hirabayashi
,
M.
,
Kitsukawa
,
Y.
,
Monrroy
,
A.
,
Ando
,
T.
,
Fujii
,
Y.
, and
Azumi
,
T.
,
2018
, “
Autoware onBoard: Enabling Autonomous Vehicles With Embedded Systems
,”
ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)
, Porto, Portugal, Apr. 11–13, pp.
287
296
.10.1109/ICCPS.2018.00035
9.
Gonzalez
,
D.
,
Perez
,
J.
,
Milanes
,
V.
, and
Nashashibi
,
F.
,
2016
, “
A Review of Motion Planning Techniques for Automated Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
4
), pp.
1135
1145
.10.1109/TITS.2015.2498841
10.
Chen
,
J.
,
Zhan
,
W.
, and
Tomizuka
,
M.
,
2019
, “
Autonomous Driving Motion Planning With Constrained Iterative LQR
,”
IEEE Trans. Intell. Veh.
,
4
(
2
), pp.
244
254
.10.1109/TIV.2019.2904385
11.
Christ
,
F.
,
Wischnewski
,
A.
,
Heilmeier
,
A.
, and
Lohmann
,
B.
,
2021
, “
Time-Optimal Trajectory Planning for a Race Car Considering Variable Tyre-Road Friction Coefficients
,”
Veh. Syst. Dyn.
,
59
(
4
), pp.
588
612
.10.1080/00423114.2019.1704804
12.
Kim
,
J.-C.
,
Pae
,
D.-S.
, and
Lim
,
M.-T.
,
2019
, “
Obstacle Avoidance Path Planning Based on Output Constrained Model Predictive Control
,”
Int. J. Control, Autom. Syst.
,
17
(
11
), pp.
2850
2861
.10.1007/s12555-019-9091-y
13.
Jin
,
X.
,
Yan
,
Z.
,
Yin
,
G.
,
Li
,
S.
, and
Wei
,
C.
,
2021
, “
An Adaptive Motion Planning Technique for on-Road Autonomous Driving
,”
IEEE Access
,
9
, pp.
2655
2664
.10.1109/ACCESS.2020.3047385
14.
Dixit
,
S.
,
Montanaro
,
U.
,
Dianati
,
M.
,
Oxtoby
,
D.
,
Mizutani
,
T.
,
Mouzakitis
,
A.
, and
Fallah
,
S.
,
2020
, “
Trajectory Planning for Autonomous High-Speed Overtaking in Structured Environments Using Robust MPC
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
6
), pp.
2310
2323
.10.1109/TITS.2019.2916354
15.
Kapania
,
N. R.
,
Subosits
,
J.
, and
Christian Gerdes
,
J.
,
2016
, “
A Sequential Two-Step Algorithm for Fast Generation of Vehicle Racing Trajectories
,”
ASME J. Dyn. Syst., Meas., Contr.
,
138
(
9
), p.
091005
.10.1115/1.4033311
16.
Heilmeier
,
A.
,
Wischnewski
,
A.
,
Hermansdorfer
,
L.
,
Betz
,
J.
,
Lienkamp
,
M.
, and
Lohmann
,
B.
,
2019
, “
Minimum Curvature Trajectory Planning and Control for an Autonomous Race Car
,”
Veh. Syst. Dyn.
,
58
(
10
), pp.
1497
1527
.10.1080/00423114.2019.1631455
17.
Stahl
,
T.
,
Wischnewski
,
A.
,
Betz
,
J.
, and
Lienkamp
,
M.
,
2019
, “
Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic Scenarios
,”
IEEE Intelligent Transportation Systems Conference (ITSC)
,
Auckland, New Zealand, Oct. 27–30, pp.
3149
3154
.10.1109/ITSC.2019.8917032
18.
Zhang
,
S.
,
Jian
,
Z.
,
Deng
,
X.
,
Chen
,
S.
,
Nan
,
Z.
, and
Zheng
,
N.
,
2022
, “
Hierarchical Motion Planning for Autonomous Driving in Large-Scale Complex Scenarios
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
8
), pp.
13291
13305
.10.1109/TITS.2021.3123327
19.
Lim
,
W.
,
Lee
,
S.
,
Sunwoo
,
M.
, and
Jo
,
K.
,
2018
, “
Hierarchical Trajectory Planning of an Autonomous Car Based on the Integration of a Sampling and an Optimization Method
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
2
), pp.
613
626
.10.1109/TITS.2017.2756099
20.
Li
,
H.
,
Luo
,
Y.
, and
Wu
,
J.
,
2019
, “
Collision-Free Path Planning for Intelligent Vehicles Based on BéZier Curve
,”
IEEE Access
,
7
, pp.
123334
123340
.10.1109/ACCESS.2019.2938179
21.
Wang
,
Y.
,
Pan
,
D.
,
Deng
,
H.
,
Jiang
,
Y.
, and
Liu
,
Z.
,
2020
, “
Dynamic Trajectory Planning of Autonomous Lane Change at Medium and Low Speeds Based on Elastic Soft Constraint of the Safety Domain
,”
Automot. Innovation
,
3
(
1
), pp.
73
87
.10.1007/s42154-020-00091-4
22.
Subosits
,
J. K.
, and
Gerdes
,
J. C.
,
2019
, “
From the Racetrack to the Road: Real-Time Trajectory Replanning for Autonomous Driving
,”
IEEE Trans. Intell. Veh.
,
4
(
2
), pp.
309
320
.10.1109/TIV.2019.2904390
23.
Herrmann
,
T.
,
Passigato
,
F.
,
Betz
,
J.
, and
Lienkamp
,
M.
,
2020
, “
Minimum Race-Time Planning-Strategy for an Autonomous Electric Racecar
,”
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
,
Rhodes, Greece, Sept. 20–23, pp.
1
6
.10.1109/ITSC45102.2020.9294681
24.
Huang
,
Z.
,
Liu
,
H.
,
Wu
,
J.
, and
Lv
,
C.
,
2024
, “
Differentiable Integrated Motion Prediction and Planning With Learnable Cost Function for Autonomous Driving
,”
arXiv:2207.10422
.10.48550/arXiv.2207.10422
25.
Chen
,
J.
,
Yuan
,
B.
, and
Tomizuka
,
M.
,
2019
, “
Deep Imitation Learning for Autonomous Driving in Generic Urban Scenarios With Enhanced Safety
,”
arXiv: 1903.00640
.10.48550/arXiv.1903.00640
26.
Huang
,
W.
,
Zhou
,
Y.
,
He
,
X.
, and
Lv
,
C.
,
2023
, “
Goalguided Transformer-Enabled Reinforcement Learning for Efficient Autonomous Navigation
,”
arXiv:2301.00362
.10.48550/arXiv.2301.00362
27.
Huang
,
W.
,
Zhang
,
C.
,
Wu
,
J.
,
He
,
X.
,
Zhang
,
J.
, and
Lv
,
C.
,
2022
, “
Sampling Efficient Deep Reinforcement Learning Through Preference-Guided Stochastic Exploration
,”
arXiv:2206.09627
.10.48550/arXiv.2206.09627
28.
Wang
,
J.
,
Wang
,
Y.
,
Zhang
,
D.
,
Yang
,
Y.
, and
Xiong
,
R.
,
2020
, “
Learning Hierarchical Behavior and Motion Planning for Autonomous Driving
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV, Oct. 24–Jan. 24, pp.
2235
2242
.10.1109/IROS45743.2020.9341647
29.
Qi
,
Z.
,
Wang
,
T.
,
Chen
,
J.
,
Narang
,
D.
,
Wang
,
Y.
, and
Yang
,
H.
,
2022
, “
Learning-Based Path Planning and Predictive Control for Autonomous Vehicles With Low-Cost Positioning
,”
IEEE Trans. Intell. Veh.
,
8
(
2
), pp.
1093
1104
.10.1109/TIV.2022.3146972
30.
Jazar
,
R. N.
,
2019
,
Advanced Vehicle Dynamics
,
Springer International Publishing
,
Cham, Berlin, Germany
.
31.
Werling
,
M.
,
Ziegler
,
J.
,
Kammel
,
S.
, and
Thrun
,
S.
,
2010
, “
Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame
,”
IEEE International Conference on Robotics and Automation
,
Anchorage, AK, May 3–7, pp.
987
993
.10.1109/ROBOT.2010.5509799
32.
Moghadam
,
M.
,
Alizadeh
,
A.
,
Tekin
,
E.
, and
Elkaim
,
G. H.
,
2021
, “
A Deep Reinforcement Learning Approach for Long-Term Short-Term Planning on Frenet Frame
,”
IEEE 17th International Conference on Automation Science and Engineering (CASE)
,
Lyon, France, Aug. 23–27, pp.
1751
1756
.10.1109/CASE49439.2021.9551598
33.
Ding
,
W.
,
Zhang
,
L.
,
Chen
,
J.
, and
Shen
,
S.
,
2019
, “
Safe Trajectory Generation for Complex Urban Environments Using Spatio-Temporal Semantic Corridor
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2997
3004
.10.1109/LRA.2019.2923954
34.
Andersson
,
J. A.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
35.
Ge
,
L.
,
Zhao
,
Y.
,
Zhong
,
S.
,
Shan
,
Z.
,
Ma
,
F.
,
Guo
,
K.
, and
Han
,
Z.
,
2022
, “
Motion Control of Autonomous Vehicles Based on Offset Free Model Predictive Control Methods
,”
ASME J. Dyn. Syst., Meas., Contr.
,
144
(
11
), p.
111003
.10.1115/1.4055166
36.
Altch
e(),
F.
,
Polack
,
P.
, and
de La Fortelle
,
A.
,
2017
, “
High-Speed Trajectory Planning for Autonomous Vehicles Using a Simple Dynamic Model
,”
IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)
,Yokohama, Japan, Oct. 16–19, pp.
1
7
.10.1109/ITSC.2017.8317632
You do not currently have access to this content.