Abstract

The fundamental principle of the transient state control method for turbofan engines, which is based on the acceleration ratio of high-pressure rotational speed (N-dot), involves sacrificing a portion of the safety margin to obtain satisfactory acceleration performance. However, it could induce surge in the engine's compressor. To prevent the destructive damage caused by surge to both the engine and its components, a surge-elimination control strategy for the engine based on an N-dot controller is proposed. First, the engine mathematical model, which incorporates the effects of engine volumetric dynamics, stall zone characteristics, and combustion chamber flameout characteristics, is established to simulate surge mechanism. Subsequently, the acceleration schedule of the N-dot is calculated by employing sequential quadratic programming (SQP) algorithm to solve the multiconstraint optimization problem, while designing the transition state controller of N-dot based on a high-order filter. Finally, the surge detection logic and surge-elimination strategy based on the μ-correction method are proposed and designed to realize active control of surge elimination. The simulation results demonstrate that the N-dot control method offers significant advantages in mitigating the steady-state errors resulting from inevitable engine degradations. The surge state is effectively suppressed by the proposed surge-elimination control method, and the surge duration is significantly shorten during the acceleration phases. Furthermore, compared to the one without any surge-elimination control, the proposed method decreases the acceleration time by 5.53%.

Graphical Abstract Figure

Correction of acceleration schedule

Graphical Abstract Figure

Correction of acceleration schedule

Close modal

References

1.
Kong
,
X.
,
Wang
,
X.
,
Tan
,
D.
,
He
,
A.
, and
Liu
,
Y.
,
2013
, “
An Extrapolation Approach for Aeroengine's Transient Control Law Design
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1106
1113
.10.1016/j.cja.2013.04.027
2.
Guo
,
Y.
,
Wang
,
L.
,
Wu
,
J.
, and
Lu
,
J.
,
2012
, “
Fixed Dynamic Method for Transient-State Optimal Control Law Design of Aircraft Engine
,”
AIAA
Paper No. 2012-4258. 10.2514/6.2012-4258
3.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis and Health Monitoring
,
American Institute of Aeronautics and Astronautics
, Reston, VA, pp.
100
107
.
4.
Wang
,
M.
,
Wang
,
L.
,
Yue
,
T.
, and
Liu
,
H.
,
2019
, “
Influence of Unmanned Combat Aerial Vehicle Agility on Short-Range Aerial Combat Effectiveness
,”
Aerosp. Sci. Technol.
,
96
(
1
), p.
105534
.10.1016/j.ast.2019.105534
5.
Guan
,
Z.
,
Liu
,
H.
,
Zheng
,
Z.
,
Ma
,
Y.
, and
Zhu
,
T.
,
2022
, “
Moving Path Following With Integrated Direct Lift Control for Carrier Landing
,”
Aerosp. Sci. Technol.
,
120
(
1
), pp.
107247.1
107247.15
.10.1016/j.ast.2021.107247
6.
Qi
,
X.
,
Fan
,
D.
,
Chen
,
Y.
, and
Li
,
W.
,
2004
, “
Multivariable Optimal Acceleration Control of Turbofan Engine Based on FSQP Algorithm
,”
J. Propul. Technol.
,
25
(
3
), pp.
233
236
.10.13675/j.cnki.tjjs.2004.03.011
7.
Chen
,
Y.
,
Xu
,
S.
,
Liu
,
Z.
,
Tu
,
Q.
, and
Yu
,
S.
,
2009
, “
Power Extraction Method for Acceleration and Deceleration Control Law Design for Turbofan Engine
,”
J. Aerosp. Power
,
24
(
4
), pp.
867
874
.10.13224/j.cnki.jasp.2009.04.022
8.
Lu
,
J.
,
Guo
,
Y.
, and
Wang
,
L.
,
2012
, “
A New Method for Designing Optimal Control Law of Aeroengine in Transient States
,”
J. Aerosp. Power
,
27
(
8
), pp.
1914
1920
.10.13224/j.cnki.jasp.2012.08.003
9.
Huang
,
R.
,
Huang
,
J.
, and
Pan
,
M.
,
2021
, “
Transient Control Method of Aero-Engine Based on Dynamic Optimization Data
,”
J. Propul. Technol.
,
42
(
2
), pp.
459
466
.10.13675/j.cnki.tjjs.190659
10.
Zheng
,
Q.
, and
Zhang
,
H.
,
2018
, “
A Global Optimization Control for Turbo-Fan Engine Acceleration Schedule Design
,”
Proc. Inst. Mech. Eng., Part G
,
232
(
2
), pp.
308
316
.10.1177/0954410016683412
11.
Li
,
J.
,
Wang
,
Z.
,
Li
,
S.
, and
Ming
,
L.
,
2022
, “
A SDNN-MPC Method for Power Distribution of COGAG Propulsion System
,”
Energy
,
254
(
9
), pp.
124310.1
124310.18
.10.1016/j.energy.2022.124310
12.
Ye
,
Y.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2021
, “
Sequential Ensemble Optimization Based on General Surrogate Model Prediction Variance and Its Application on Engine Acceleration Schedule Design
,”
Chin. J. Aeronaut.
,
34
(
8
), pp.
16
33
.10.1016/j.cja.2021.03.010
13.
Hao
,
W.
,
Wang
,
Z.
,
Zhang
,
X.
, and
Zhou
,
L.
,
2022
, “
Acceleration Technique for Global Optimization of a Variable Cycle Engine
,”
Aerosp. Sci. Technol.
,
129
(
10
), pp.
107792.1
107792.15
.10.1016/j.ast.2022.107792
14.
Dang
,
W.
,
Wang
,
X.
,
Wang
,
H.
,
Li
,
Z.
, and
Li
,
H.
,
2015
, “
Design of Transient State Control Mode Based on Rotor Acceleration
,”
Proceedings of 2015 12th International Bhurban Conference on Applied Sciences & Technology (IBCAST)
,
IEEE
,
Islamabad, Pakistan
, Jan. 13–17, Vol.
1
, pp.
126
132
.
15.
Peng
,
K.
,
Yang
,
F.
,
Zhang
,
Z.
, and
Jiao
,
C.
,
2020
, “
Design and Test Verification of Acceleration Control for the Auxiliary Power Unit Based on N-Dot Acceleration Control Law
,”
The 10th Asia Conference on Mechanical and Aerospace Engineering
,
IOP Publishing Ltd
, Dec. 26–28, pp.
1
6
.
16.
Yao
,
T.
,
Wen
,
W.
,
Yang
,
G.
,
Wang
,
Y.
, and
Zhu
,
A.
,
2020
, “
Control Law Design for N-Dot Closed Control Loop for Acceleration and Deceleration Process in Turbofan Engine
,”
J. Propul. Technol.
,
41
(
6
), pp.
1404
1410
.10.13675/j.cnki.tjjs.190273
17.
Montazeri-Gh
,
M.
,
Rasti
,
A.
,
Jafari
,
A.
, and
Ehteshami
,
M.
,
2019
, “
Design and Implementation of MPC for Turbofan Engine Control System
,”
Aerosp. Sci. Technol.
,
92
(
9
), pp.
99
113
.10.1016/j.ast.2019.05.061
18.
Lv
,
C.
,
Chang
,
J.
,
Bao
,
W.
, and
Da
,
Y.
,
2022
, “
Recent Research Progress on Airbreathing Aero-Engine Control Algorithm
,”
Propul. Power Res.
,
11
(
1
), pp.
1
57
.10.1016/j.jppr.2022.02.003
19.
Mohammadi
,
S. J.
,
Miran Fashandi
,
S. A.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2021
, “
A Scientometric Analysis and Critical Review of Gas Turbine Aero-Engines Control: From Whittle Engine to More-Electric Propulsion
,”
Meas. Control
,
54
(
5–6
), pp.
935
966
.10.1177/0020294020956675
20.
Liu
,
X.
,
Luo
,
C.
, and
Xiong
,
L.
,
2022
, “
Compensators Design for Bumpless Switching in Aero‐Engine Multi-Loop Control System
,”
Asian J. Control
,
24
(
5
), pp.
2665
2678
.10.1002/asjc.2677
21.
Guan
,
T.
, and
Li
,
Q.
,
2020
, “
Control Method for Limit Protection of Turbofan Engine Based on Improved Model Free Adaptive Algorithm
,”
J. Propul. Technol.
,
41
(
10
), pp.
2348
2357
.10.13675/j.cnki.tjjs.190474
22.
Wang
,
K.
,
Wu
,
F.
, and
Sun
,
X. M.
,
2023
, “
Switching Anti-Windup Control for Aircraft Engines
,”
IEEE Trans. Ind. Electron.
,
70
(
2
), pp.
1830
1840
.10.1109/TIE.2022.3163464
23.
Garg
,
S.
,
2013
, “
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
,”
J. Aerosp. Eng.
,
26
(
2
), pp.
422
438
.10.1061/(ASCE)AS.1943-5525.0000296
24.
Seok
,
J.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2017
, “
Coordinated Model Predictive Control of Aircraft Gas Turbine Engine and Power System
,”
J. Guid., Control, Dyn.
,
40
(
10
), pp.
2538
2555
.10.2514/1.G002562
25.
Mohammadi
,
E.
, and
Montazeri-Gh
,
M.
,
2015
, “
A New Approach to the Gray-Box Identification of Wiener Models With the Application of Gas Turbine Engine Modeling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071202
.10.1115/1.4029170
26.
Zhang
,
S.
,
2006
, “
Research on the Heat Distortion Parameters and the Design for Engine Surge Control Systems
,”
J. Propul. Technol.
,
27
(
1
), pp.
15
19
.10.13675/j.cnki.tjjs.2006.01.004
27.
Dong
,
W.
,
Shao
,
P.
,
Xie
,
W.
,
Lin
,
Y.
, and
Sun
,
X.
,
2015
, “
Dynamic Surface Control Design for the Rotating Stall and Surge in an Aeroengine Compressor
,”
Asian J. Control
,
17
(
5
), pp.
2025
2032
.10.1002/asjc.1075
28.
Chen
,
Z.
,
2017
, “
Research on Aeroengine Anti-Surge Control Based on Interstage Bleeding
,”
Aeronaut. Sci. Technol.
,
28
(
10
), pp.
40
44
.10.19452/j.issn1007-5453.2017.10.040
29.
Qin
,
H. B.
, and
Sun
,
J. G.
,
2006
, “
Investigation on Aircraft Engine Anti-Surge/Surge Eliminating Control System
,”
J. Aerosp. Power
,
21
(
1
), pp.
201
206
.10.13224/j.cnki.jasp.2006.01.036
30.
Howlett
,
J.
,
Morrison
,
T.
, and
Zagranski
,
R.
,
1984
, “
Adaptive Fuel Control for Helicopter Application
,”
J. Am. Helicopter Soc.
,
29
(
4
), pp.
43
54
.10.4050/JAHS.29.43
31.
Huang
,
W.
, and
Huang
,
X.
,
2013
, “
Compressor Surge Active Control Based on Second-Order Sliding Mode
,”
China Mech. Eng.
,
24
(
21
), pp.
2852
2855
.10.3969/j.issn.1004-132X.2013.21.003
32.
Powers
,
K. H.
,
Kennedy
,
I.
,
Brace
,
C.
,
Milewski
,
P.
, and
Copeland
,
C.
,
2021
, “
Development and Validation of a Model for Centrifugal Compressors in Reversed Flow Regimes
,”
ASME J. Turbomach.
,
143
(
10
), p.
101001
.10.1115/1.4050668
33.
Li
,
J.
,
Du
,
J.
,
Nie
,
C.
, and
Zhang
,
H.
,
2019
, “
Review of Tip Air Injection to Improve Stall Margin in Axial Compressors
,”
Prog. Aerosp. Sci.
,
106
(
4
), pp.
15
31
.10.1016/j.paerosci.2019.01.005
34.
Hu
,
S.
,
Sun
,
J.
,
Jiang
,
C.
,
Wang
,
B.
,
Sun
,
W.
, and
Zhu
,
G.
,
1991
, “
A Dynamic Model of Two-Spool Turbo-Jet Engine With Post-Stall Capability
,”
Acta Aeronaut. Astronaut. Sin.
,
12
(
6
), pp.
300
303
.
35.
Zhang
,
H.
,
Hua
,
W.
, and
Wu
,
W.
,
2013
, “
Active Stability Control Method for Turbofan Engine Based on Post-Stall Model
,”
J. Aerosp. Power
,
28
(
5
), pp.
1150
1158
.10.13224/j.cnki.jasp.2013.05.024
36.
Jiqiang
,
W.
,
Weicun
,
Z.
, and
Zhongzhi
,
H.
,
2022
,
Model-Based Nonlinear Control of Aeroengines
,
Springer
,
Singapore
, pp.
129
132
.10.1007/978-981-16-4453-5_4
You do not currently have access to this content.