Abstract

The delayed resonator (DR) is known for its ideal vibration suppression and simple control logic, but its operable frequency range is also known limited due to stability issues and practical hardware constraints. To extend the limited operable frequency range, we inject an additional nondelayed control term into the feedback loop of the classic DR such that the equivalent natural frequency of the DR can be real-time tuned, so the creation of DR with virtual natural frequency adjustment (DRV). Besides, we take the difference between the adjustable natural frequency of the DRV and the excitation frequency as a control parameter to further enhance the vibration suppression leading to optionally tuned parameters for a given excitation. For this, we start with the complete stability analyses of the DRV and the associated coupled system following independent and purely analytical approaches, and the obtained nonconservative stability maps reveal DRV's greatly extended operable frequency range. Given the optional tuned parameters, an optimization procedure aiming for a faster transient process and stronger robustness is proposed to determine the optimal parameter composition. Finally, three numerical case studies are prepared to demonstrate the benefits of the DRV compared with the classic DR. In addition to extending the operable frequency range of the classic DR, this work simplifies the stability analysis of the existing DR investigations and provides a guideline for the tuned control parameter design if they are optional.

References

1.
Yan
,
B.
,
Yu
,
N.
,
Ma
,
H.
, and
Wu
,
C.
,
2022
, “
A Theory for Bistable Vibration Isolators
,”
Mech. Syst. Signal Process.
,
167
, p.
108507
.10.1016/j.ymssp.2021.108507
2.
Yan
,
B.
,
Yu
,
N.
, and
Wu
,
C.
,
2022
, “
A State-of-the-Art Review on Low-Frequency Nonlinear Vibration Isolation With Electromagnetic Mechanisms
,”
Appl. Math. Mech.
,
43
(
7
), pp.
1045
1062
.10.1007/s10483-022-2868-5
3.
Elmali
,
H.
,
Renzulli
,
M.
, and
Olgac
,
N.
,
2000
, “
Experimental Comparison of Delayed Resonator and PD Controlled Vibration Absorbers Using Electromagnetic Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
514
520
.10.1115/1.1286820
4.
Weber
,
F.
,
2014
, “
Semi-Active Vibration Absorber Based on Real-Time Controlled MR Damper
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
272
288
.10.1016/j.ymssp.2014.01.017
5.
Rasid
,
S. M. R.
,
Mizuno
,
T.
,
Ishino
,
Y.
,
Takasaki
,
M.
,
Hara
,
M.
, and
Yamaguchi
,
D.
,
2019
, “
Design and Control of Active Vibration Isolation System With an Active Dynamic Vibration Absorber Operating as Accelerometer
,”
J. Sound Vib.
,
438
, pp.
175
190
.10.1016/j.jsv.2018.09.037
6.
Olgac
,
N.
, and
Holm-Hansen
,
B.
,
1994
, “
A Novel Active Vibration Absorption Technique: Delayed Resonator
,”
J. Sound Vib.
,
176
(
1
), pp.
93
104
.10.1006/jsvi.1994.1360
7.
Olgac
,
N.
, and
Holm-Hansen
,
B.
,
1995
, “
Design Considerations for Delayed-Resonator Vibration Absorbers
,”
J. Eng. Mech.
,
121
(
1
), pp.
80
89
.10.1061/(ASCE)0733-9399(1995)121:1(80)
8.
Olgac
,
N.
, and
Holm-Hansen
,
B.
,
1995
, “
Tunable Active Vibration Absorber: The Delayed Resonator
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
4
), pp.
513
519
.10.1115/1.2801108
9.
Olgac
,
N.
,
Elmali
,
H.
,
Hosek
,
M.
, and
Renzulli
,
M.
,
1997
, “
Active Vibration Control of Distributed Systems Using Delayed Resonator With Acceleration Feedback
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
380
389
.10.1115/1.2801269
10.
Nia
,
P. M.
, and
Sipahi
,
R.
,
2013
, “
Controller Design for Delay-Independent Stability of Linear Time-Invariant Vibration Systems With Multiple Delays
,”
J. Sound Vib.
,
332
(
14
), pp.
3589
3604
.10.1016/j.jsv.2013.01.016
11.
Vyhlídal
,
T.
,
Olgac
,
N.
, and
Kučera
,
V.
,
2014
, “
Delayed Resonator With Acceleration Feedback–Complete Stability Analysis by Spectral Methods and Vibration Absorber Design
,”
J. Sound Vib.
,
333
(
25
), pp.
6781
6795
.10.1016/j.jsv.2014.08.002
12.
Pilbauer
,
D.
,
Vyhlídal
,
T.
, and
Olgac
,
N.
,
2016
, “
Delayed Resonator With Distributed Delay in Acceleration Feedback–Design and Experimental Verification
,”
IEEE/ASME Trans. Mechatronics
,
21
(
4
), pp.
2120
2131
.10.1109/TMECH.2016.2516763
13.
Kučera
,
V.
,
Pilbauer
,
D.
,
Vyhlídal
,
T.
, and
Olgac
,
N.
,
2017
, “
Extended Delayed Resonators–Design and Experimental Verification
,”
Mechatronics
,
41
, pp.
29
44
.10.1016/j.mechatronics.2016.10.019
14.
Kammer
,
A. S.
, and
Olgac
,
N.
,
2016
, “
Delayed-Feedback Vibration Absorbers to Enhance Energy Harvesting
,”
J. Sound Vib.
,
363
, pp.
54
67
.10.1016/j.jsv.2015.10.030
15.
Karama
,
M.
,
Hamdi
,
M.
, and
Habbad
,
M.
,
2021
, “
Energy Harvesting in a Nonlinear Energy Sink Absorber Using Delayed Resonators
,”
Nonlinear Dyn.
,
105
(
1
), pp.
113
129
.10.1007/s11071-021-06611-z
16.
Firoozy
,
P.
,
Friswell
,
M. I.
, and
Gao
,
Q.
,
2019
, “
Using Time Delay in the Nonlinear Oscillations of Magnetic Levitation for Simultaneous Energy Harvesting and Vibration Suppression
,”
Int. J. Mech. Sci.
,
163
, p.
105098
.10.1016/j.ijmecsci.2019.105098
17.
Valášek
,
M.
,
Olgac
,
N.
, and
Neusser
,
Z.
,
2019
, “
Real-Time Tunable Single-Degree of Freedom, Multiple-Frequency Vibration Absorber
,”
Mech. Syst. Signal Process.
,
133
, p.
106244
.10.1016/j.ymssp.2019.07.025
18.
Vyhlídal
,
T.
,
Pilbauer
,
D.
,
Alikoç
,
B.
, and
Michiels
,
W.
,
2019
, “
Analysis and Design Aspects of Delayed Resonator Absorber With Position, Velocity or Acceleration Feedback
,”
J. Sound Vib.
,
459
, p.
114831
.10.1016/j.jsv.2019.06.038
19.
Pilbauer
,
D.
,
Vyhlídal
,
T.
, and
Michiels
,
W.
,
2019
, “
Optimized Design of Robust Resonator With Distributed Time-Delay
,”
J. Sound Vib.
,
443
, pp.
576
590
.10.1016/j.jsv.2018.12.002
20.
Jenkins
,
R.
, and
Olgac
,
N.
,
2019
, “
Real-Time Tuning of Delayed Resonator-Based Absorbers for Spectral and Spatial Variations
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021011
.10.1115/1.4041592
21.
Olgac
,
N.
, and
Jenkins
,
R.
,
2021
, “
Actively Tuned Noncollocated Vibration Absorption: An Unexplored Venue in Vibration Science and a Benchmark Problem
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
294
304
.10.1109/TCST.2020.2973603
22.
Šika
,
Z.
,
Vyhlídal
,
T.
, and
Neusser
,
Z.
,
2021
, “
Two-Dimensional Delayed Resonator for Entire Vibration Absorption
,”
J. Sound Vib.
,
500
, p.
116010
.10.1016/j.jsv.2021.116010
23.
Vyhlídal
,
T.
,
Michiels
,
W.
,
Neusser
,
Z.
,
Bušek
,
J.
, and
Šika
,
Z.
,
2022
, “
Analysis and Optimized Design of an Actively Controlled Two-Dimensional Delayed Resonator
,”
Mech. Syst. Signal Process.
,
178
, p.
109195
.10.1016/j.ymssp.2022.109195
24.
Liu
,
Y.
,
Cai
,
J.
,
Olgac
,
N.
, and
Gao
,
Q.
,
2022
, “
A Robust Delayed Resonator Construction Using Amplifying Mechanism
,”
ASME J. Vib. Acoust.
,
145
(
1
), p.
011010
.10.1115/1.4055559
25.
Rivaz
,
H.
, and
Rohling
,
R.
,
2007
, “
An Active Dynamic Vibration Absorber for a Hand-Held Vibro-Elastography Probe
,”
ASME J. Vib. Acoust.
, 129(1), pp.
101
112
.10.1115/1.2424982
26.
Olgac
,
N.
, and
Sipahi
,
R.
,
2004
, “
A Practical Method for Analyzing the Stability of Neutral Type LTI-Time Delayed Systems
,”
Automatica
,
40
(
5
), pp.
847
853
.10.1016/j.automatica.2003.12.010
27.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.10.1109/TAC.2002.1000275
28.
Gao
,
Q.
,
Kammer
,
A. S.
,
Zalluhoglu
,
U.
, and
Olgac
,
N.
,
2015
, “
Critical Effects of the Polarity Change in Delayed States Within an LTI Dynamics With Multiple Delays
,”
IEEE Trans. Autom. Control
,
60
(
11
), pp.
3018
3022
.10.1109/TAC.2015.2408553
29.
Gao
,
Q.
,
Kammer
,
A. S.
,
Zalluhoglu
,
U.
, and
Olgac
,
N.
,
2015
, “
Combination of Sign Inverting and Delay Scheduling Control Concepts for Multiple-Delay Dynamics
,”
Syst. Control Lett.
,
77
, pp.
55
62
.10.1016/j.sysconle.2015.01.001
30.
Hale
,
J. K.
, and
Lunel
,
S. M. V.
,
2013
,
Introduction to Functional Differential Equations
, Vol.
99
,
Springer Science & Business Media
, New York.
31.
Olgac
,
N.
,
Vyhlídal
,
T.
, and
Sipahi
,
R.
,
2008
, “
A New Perspective in the Stability Assessment of Neutral Systems With Multiple and Cross-Talking Delays
,”
SIAM J. Control Optim.
,
47
(
1
), pp.
327
344
.10.1137/070679302
32.
Hale
,
J. K.
,
Infante
,
E. F.
, and
Tsen
,
F.-S. P.
,
1985
, “
Stability in Linear Delay Equations
,”
J. Math. Anal. Appl.
,
105
(
2
), pp.
533
555
.10.1016/0022-247X(85)90068-X
33.
Kolmanovskii
,
V. B.
, and
Nosov
,
V. R.
,
1986
,
Stability of Functional Differential Equations
, Vol.
180
,
Elsevier
, Amsterdam, The Netherlands.
34.
Vyhlidal
,
T.
, and
Zítek
,
P.
,
2009
, “
Mapping Based Algorithm for Large-Scale Computation of Quasi-Polynomial Zeros
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
171
177
.10.1109/TAC.2008.2008345
You do not currently have access to this content.