Selective laser sintering (SLS) was used to fabricate graphite composite plates for polymer electrolyte membrane fuel cells, which has the advantages of reducing time and cost associated with the research and development of bipolar plates. Graphite composite plates with three different designs, i.e., parallel in series, interdigitated, and bio-inspired, were fabricated using the SLS process. The performance of these SLS fabricated plates was studied experimentally within a fuel cell assembly under various operating conditions. The effect of temperature, relative humidity, and pressure on fuel cell performance was investigated. In the tests conducted in this study, the best fuel cell performance was achieved with a temperature of 65–75°C, relative humidity of 100%, and back pressure of 2 atm. The performance of fuel cell operating over an extended time was also studied, with the result showing that the SLS fabricated graphite composite plates provided a relatively steady fuel cell output power.

References

1.
Tsuchiya
,
H.
, and
Kobayashi
,
O.
,
2004
, “
Mass Production Cost of PEM Fuel Cell by Learning Curve
,”
Int. J. Hydrogen Energy
,
29
, pp.
985
990
.10.1016/j.ijhydene.2003.10.011
2.
Kloess
,
J. P.
,
Wang
,
X.
,
Liu
,
J.
,
Shi
,
Z.
, and
Guessous
,
L.
,
2009
, “
Investigation of Bio-Inspired Flow Channel Designs for Bipolar Plates in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
188
, pp.
132
140
.10.1016/j.jpowsour.2008.11.123
3.
Ramos-Alvarado
,
B.
,
Hernandez-Guerrero
,
A.
,
Elizalde-Blancas
,
F.
, and
Ellis
,
M. W.
,
2011
, “
Constructal Flow Distributor as a Bipolar Plate for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
, pp.
12965
12976
.10.1016/j.ijhydene.2011.07.017
4.
Manso
,
A. P.
,
Marzo
,
F. F.
,
Barranco
,
J.
,
Garikano
,
X.
, and
Mujika
,
M.
,
2012
, “
Influence of Geometric Parameters of the Flow Fields on the Performance of a PEM Fuel Cell. A Review
,”
Int. J. Hydrogen Energy
,
37
(20), pp. 15256–15287.10.1016/j.ijhydene.2012.07.076
5.
Aiyejina
,
A.
, and
Sastry
,
M. K. S.
,
2012
, “
PEMFC Flow Channel Geometry Optimization: A Review
,”
ASME J. Fuel Cell Sci. Tech.
,
9
(1), p.
011011
.10.1115/1.4005393
6.
Muller
,
A.
,
Kauranen
,
P.
,
Ganski
,
A.
, and
Hell
,
B.
,
2006
, “
Injection Moulding of Graphite Composite Bipolar Plates
,”
J. Power Sources
,
154
, pp.
467
471
.10.1016/j.jpowsour.2005.10.096
7.
Dhakate
,
S. R.
,
Mathur
,
R. B.
,
Kakati
,
B. K.
, and
Dhami
,
T. L.
,
2007
, “
Properties of Graphite-Composite Bipolar Plate Prepared by Compression Molding Technique for PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
32
, pp.
4537
4543
.10.1016/j.ijhydene.2007.02.017
8.
Mathur
,
R. B.
,
Dhakate
,
S. R.
,
Gupta
,
D. K.
,
Dhami
,
T. L.
, and
Aggarwal
,
R. K.
,
2008
, “
Effect of Different Carbon Fillers on the Properties of Graphite Composite Bipolar Plate
,”
J. Mater. Process. Technol.
,
203
, pp.
184
192
.10.1016/j.jmatprotec.2007.10.044
9.
Blunk
,
R.
,
Elhamid
,
M. H.
,
Lisi
,
D.
, and
Mikhail
,
Y.
,
2006
, “
Polymeric Composite Bipolar Plates for Vehicle Application
,”
J. Power Sources
,
156
, pp.
151
157
.10.1016/j.jpowsour.2005.04.041
10.
Du
,
L.
, and
Jana
,
S. C.
,
2007
, “
Highly Conductive Epoxy/Graphite Composites for Bipolar Plates in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
172
, pp.
734
741
.10.1016/j.jpowsour.2007.05.088
11.
Lee
,
J. H.
,
Jang
,
Y. K.
,
Hong
,
C. E.
,
Kim
,
N. H.
,
Li
,
P.
, and
Lee
,
H. K.
,
2009
, “
Effect of Carbon Fillers on Properties of Polymer Composite Bipolar Plates of Fuel Cells
,”
J. Power Sources
,
193
, pp.
523
529
.10.1016/j.jpowsour.2009.04.029
12.
Hsiao
,
M. C.
,
Liao
,
S. H.
,
Yen
,
M. Y.
,
Su
,
A.
,
Wu
,
I. T.
,
Hsiao
,
M. H.
, and
Lee
,
S. J.
,
2010
, “
Effect of Graphite Sizes and Carbon Nanotubes Content on Flowability of Bulk-Molding Compound and Formability of the Composite Bipolar Plate for Fuel Cell
,”
J. Power Sources
,
195
, pp.
5645
5650
.10.1016/j.jpowsour.2010.03.065
13.
Yen
,
C. Y.
,
Liao
,
S. H.
,
Lin
,
Y. F.
,
Huang
,
C. H.
,
Lin
,
Y. Y.
, and
Ma
,
C. M.
,
2006
, “
Preparation and Properties of High Performance Nanocomposite Bipolar Plate for Fuel Cell
,”
J. Power Sources
,
162
, pp.
309
315
.10.1016/j.jpowsour.2006.06.076
14.
Guo
,
N.
, and
Leu
,
M. C.
,
2010
, “
Effect of Different Graphite Materials on Electrical Conductivity and Flexural Strength of Bipolar Plates Fabricated by Selective Laser Sintering
,”
International SFF Symposium
, Austin, TX, August 2–4, pp.
482
492
.
15.
Chen
,
S.
,
Bourell
,
D. L.
, and
Wood
,
K. L.
,
2004
, “
Fabrication of PEM Fuel Cell Bipolar Plates by Indirect SLS
,”
International SFF Symposium
, Austin, TX, August 2–4, pp.
244
256
.
16.
Chen
,
S.
,
Murphy
,
J.
,
Herlehy
,
J.
, and
Bourell
,
D. L.
,
2006
, “
Development of SLS Fuel Cell Current Collectors
,”
Rapid Prototyping J.
,
12
(
5
), pp.
275
282
.10.1108/13552540610707031
17.
Wu
,
M.
,
Leu
,
M. C.
, and
Guo
,
N.
,
2012
, “
Simulation and Testing of Polymer Electrolyte Membrane Fuel Cell Bipolar Plates Fabricated by Selective Laser Sintering
,” ASME International Symposium on Flexible Automation, St. Louis, MO, June 18–20,
ASME
Paper No. ISFA2012-7249.10.1115/ISFA2012-7249
18.
Bourell
,
D. L.
,
Leu
,
M. C.
,
Chakravarthy
,
K.
,
Guo
,
N.
, and
Alayavalli
,
K.
,
2011
, “
Graphite-Based Indirect Laser Sintered Fuel Cell Bipolar Plates Containing Carbon Fiber Additions
,”
CIRP Ann.
,
60
, pp.
275
278
.10.1016/j.cirp.2011.03.105
19.
Guo
,
N.
, and
Leu
,
M. C.
,
2012
, “
Effect of Different Graphite Materials on the Electrical Conductivity and Flexural Strength of Bipolar Plates Fabricated Using Selective Laser Sintering
,”
Int. J. Hydrogen Energy
,
37
, pp.
3558
3566
.10.1016/j.ijhydene.2011.11.058
20.
Amirinejad
,
M.
,
Rowshanzamir
,
S.
, and
Eikani
,
M. H.
,
2006
, “
Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
161
, pp.
872
875
.10.1016/j.jpowsour.2006.04.144
21.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
,
2003
, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
,
28
, pp.
1263
1272
.10.1016/S0360-3199(02)00284-7
22.
Ghosh
,
P. C.
,
Wüster
,
T.
,
Dohle
,
H.
,
Kimiaie
,
N.
,
Mergel
,
J.
, and
Stolten
,
D.
,
2006
, “
Analysis of Single PEM Fuel Cell Performances Based on Current Density Distribution Measurement
,”
ASME J. Fuel Cell Sci. Tech.
,
3
(3), pp.
351
357
.10.1115/1.2173664
23.
Jang
,
J. H.
,
Chiu
,
H. C.
,
Yan
,
W. M.
, and
Sun
,
W. L.
,
2008
, “
Effects of Operating Conditions on the Performances of Individual Cell and Stack of PEM Fuel Cell
,”
J. Power Sources
,
180
, pp.
476
483
.10.1016/j.jpowsour.2008.02.001
24.
Wang
,
L.
, and
Liu
,
H.
,
2004
, “
Performance Studies of PEM Fuel Cells With Interdigitated Flow Fields
,”
J. Power Sources
,
134
, pp.
185
196
.10.1016/j.jpowsour.2004.03.055
25.
Department of Energy
, 2012, “
Technical Plan–Fuel Cells
,” accessed Aug.
2012
, http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf
26.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
,
2006
, “
Pressure Drop and Flow Distribution in Multiple Parallel-Channel Configurations Used in Proton-Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
157
, pp.
358
367
.10.1016/j.jpowsour.2005.07.064
27.
Nguyen
,
T. Y.
,
1996
, “
A Gas Distributor Design for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
143
(
5
), pp.
103
105
.10.1149/1.1836666
28.
O'hayre
,
R. P.
,
Cha
,
S. W.
,
Colella
,
W. G.
, and
Prinz
,
F. B.
,
2009
,
Fuel Cell Fundamentals
, 2nd ed.,
Wiley
,
New York
, pp.
195
197
.
29.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods: Fundamental and Applications
, 2nd ed.,
Wiley
,
New York
, Chap. 3.
30.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
31.
Li
,
H.
,
Tang
,
Y.
,
Wang
,
Z.
,
Shi
,
Z.
, Wu, S., Song, D., Zhang, J., Fatih, K., Zhang, J., Wang, H., Liu, Z., Abouatallah, R., and Mazza, A.,
2008
, “
A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
178
, pp.
103
117
.10.1016/j.jpowsour.2007.12.068
32.
Jeon
,
D. H.
,
Greenway
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2008
, “
The Effect of Serpentine Flow-Field Designs on PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
33
, pp.
1052
1066
.10.1016/j.ijhydene.2007.11.015
33.
Spernjak
,
D.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2007
, “
Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell
,”
J. Power Sources
,
170
, pp.
334
344
.10.1016/j.jpowsour.2007.04.020
34.
Barbir
,
F.
,
Gorgun
,
H.
, and
Wang
,
X.
,
2005
, “
Relationship Between Pressure Drop and Cell Resistance as a Diagnostic Tool for PEM Fuel Cells
,”
J. Power Sources
,
141
, pp.
96
101
.10.1016/j.jpowsour.2004.08.055
You do not currently have access to this content.