Abstract

Silicon nanowires (SiNWs) with three different average diameters of 90, 120, and 140 nm were synthesized by a metal-assisted chemical etching (MACE) method. Environmental sustainability of the MACE process was studied by investigating material consumptions, gas emissions, and silver nanoparticle concentrations in nitric acid solutions for 1 g of SiNWs and 1 kW h of lithium-ion battery (LIB) electrodes. It was found that the process for 90 nm SiNWs has the best sustainability performance compared with the other two processes. Specifically, in this study for 1 g of 90 nm SiNWs, 8.845 g of Si wafer is consumed, 1.09 g of H2 and 1.04 g of NO are produced, and 54.807 mg of Ag nanoparticles are found in the HNO3 solution. Additionally, for 1 kW h of LIB electrodes, the process for 90 nm SiNWs results in 1.943 kg of Si wafer consumption, 239.455 g of H2 and 239.455 g of NO emissions, and 12.040 g of Ag nanoparticles concentrations. By quantitatively investigating the material consumptions and emissions, this study assesses the sustainability performance of the MACE process for synthesizing SiNWs for use in LIBs, and thus it provides process data for the analysis and the development of sustainable production methods for SiNWs and similar anode materials for next-generation LIBs.

References

1.
Zubi
,
G.
,
Dufo-Lopez
,
R.
,
Carvalho
,
M.
, and
Pasaoglu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renew. Sustain. Energy Rev.
,
89
, pp.
292
308
. 10.1016/j.rser.2018.03.002
2.
Zhang
,
W. J.
,
2011
, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
. 10.1016/j.jpowsour.2010.07.020
3.
Zuo
,
X. X.
,
Zhu
,
J.
,
Muller-Buschbaum
,
P.
, and
Cheng
,
Y. J.
,
2017
, “
Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review
,”
Nano Energy
,
31
, pp.
113
143
. 10.1016/j.nanoen.2016.11.013
4.
Wang
,
W.
,
Favors
,
Z.
,
Li
,
C. L.
,
Liu
,
C.
,
Ye
,
R.
,
Fu
,
C. Y.
,
Bozhilov
,
K.
,
Guo
,
J. C.
,
Ozkan
,
M.
, and
Ozkan
,
C. S.
,
2017
, “
Silicon and Carbon Nanocomposite Spheres With Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries
,”
Sci. Rep.
,
7
, p.
44838
. 10.1038/srep44838
5.
Peng
,
K.
,
Jie
,
J.
,
Zhang
,
W.
, and
Lee
,
S.-T.
,
2008
, “
Silicon Nanowires for Rechargeable Lithium-Ion Battery Anodes
,”
Appl. Phys. Lett.
,
93
(
3
), p.
033105
. 10.1063/1.2929373
6.
Cui
,
L.-F.
,
Yang
,
Y.
,
Hsu
,
C.-M.
, and
Cui
,
Y.
,
2009
, “
Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
,”
Nano Lett.
,
9
(
9
), pp.
3370
3374
. 10.1021/nl901670t
7.
Liu
,
X. H.
,
Zhang
,
L. Q.
,
Zhong
,
L.
,
Liu
,
Y.
,
Zheng
,
H.
,
Wang
,
J. W.
,
Cho
,
J.-H.
,
Dayeh
,
S. A.
,
Picraux
,
S. T.
, and
Sullivan
,
J. P.
,
2011
, “
Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
,”
Nano Lett.
,
11
(
6
), pp.
2251
2258
. 10.1021/nl200412p
8.
Kim
,
H.
,
Seo
,
M.
,
Park
,
M. H.
, and
Cho
,
J.
,
2010
, “
A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
,”
Angew. Chem. Int. Ed.
,
49
(
12
), pp.
2146
2149
. 10.1002/anie.200906287
9.
Dimov
,
N.
,
Kugino
,
S.
, and
Yoshio
,
M.
,
2003
, “
Carbon-Coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations
,”
Electrochim. Acta
,
48
(
11
), pp.
1579
1587
. 10.1016/S0013-4686(03)00030-6
10.
Song
,
T.
,
Xia
,
J.
,
Lee
,
J.-H.
,
Lee
,
D. H.
,
Kwon
,
M.-S.
,
Choi
,
J.-M.
,
Wu
,
J.
,
Doo
,
S. K.
,
Chang
,
H.
, and
Park
,
W. I.
,
2010
, “
Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries
,”
Nano Lett.
,
10
(
5
), pp.
1710
1716
. 10.1021/nl100086e
11.
Park
,
M.-H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
. 10.1021/nl902058c
12.
Yao
,
Y.
,
McDowell
,
M. T.
,
Ryu
,
I.
,
Wu
,
H.
,
Liu
,
N.
,
Hu
,
L.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2011
, “
Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life
,”
Nano Lett.
,
11
(
7
), pp.
2949
2954
. 10.1021/nl201470j
13.
Wang
,
X.-L.
, and
Han
,
W.-Q.
,
2010
, “
Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires
,”
ACS Appl. Mater. Interfaces
,
2
(
12
), pp.
3709
3713
. 10.1021/am100857h
14.
Kim
,
H.
,
Han
,
B.
,
Choo
,
J.
, and
Cho
,
J.
,
2008
, “
Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
,”
Angew. Chem. Int. Ed.
,
120
(
52
), pp.
10305
10308
. 10.1002/ange.200804355
15.
Ge
,
M.
,
Rong
,
J.
,
Fang
,
X.
, and
Zhou
,
C.
,
2012
, “
Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life
,”
Nano Lett.
,
12
(
5
), pp.
2318
2323
. 10.1021/nl300206e
16.
Memarzadeh
,
E. L.
,
Kalisvaart
,
W. P.
,
Kohandehghan
,
A.
,
Zahiri
,
B.
,
Holt
,
C. M.
, and
Mitlin
,
D.
,
2012
, “
Silicon Nanowire Core Aluminum Shell Coaxial Nanocomposites for Lithium Ion Battery Anodes Grown With and Without a TiN Interlayer
,”
J. Mater. Chem.
,
22
(
14
), pp.
6655
6668
. 10.1039/C2JM16167B
17.
Wu
,
Y.
,
Cui
,
Y.
,
Huynh
,
L.
,
Barrelet
,
C. J.
,
Bell
,
D. C.
, and
Lieber
,
C. M.
,
2004
, “
Controlled Growth and Structures of Molecular-Scale Silicon Nanowires
,”
Nano Lett.
,
4
(
3
), pp.
433
436
. 10.1021/nl035162i
18.
Hannon
,
J.
,
Kodambaka
,
S.
,
Ross
,
F.
, and
Tromp
,
R.
,
2006
, “
The Influence of the Surface Migration of Gold on the Growth of Silicon Nanowires
,”
Nature
,
440
(
7080
), pp.
69
71
. 10.1038/nature04574
19.
Pan
,
H.
,
Lim
,
S.
,
Poh
,
C.
,
Sun
,
H.
,
Wu
,
X.
,
Feng
,
Y.
, and
Lin
,
J.
,
2005
, “
Growth of Si Nanowires by Thermal Evaporation
,”
Nanotechnology
,
16
(
4
), pp.
417
15697
. 10.1088/0957-4484/16/4/014
20.
Pan
,
Z.
,
Dai
,
Z.
,
Xu
,
L.
,
Lee
,
S.
, and
Wang
,
Z.
,
2001
, “
Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders
,”
J Phys. Chem. B
,
105
(
13
), pp.
2507
2514
. 10.1021/jp004253q
21.
Peng
,
K.
,
Hu
,
J.
,
Yan
,
Y.
,
Wu
,
Y.
,
Fang
,
H.
,
Xu
,
Y.
,
Lee
,
S.
, and
Zhu
,
J.
,
2006
, “
Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface With Catalytic Metal Particles
,”
Adv. Funct. Mater.
,
16
(
3
), pp.
387
394
. 10.1002/adfm.200500392
22.
Huang
,
Z.
,
Fang
,
H.
, and
Zhu
,
J.
,
2007
, “
Fabrication of Silicon Nanowire Arrays With Controlled Diameter, Length, and Density
,”
Adv. Mater.
,
19
(
5
), pp.
744
748
. 10.1002/adma.200600892
23.
Yang
,
Y.-H.
,
Wu
,
S.-J.
,
Chiu
,
H.-S.
,
Lin
,
P.-I.
, and
Chen
,
Y.-T.
,
2004
, “
Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation
,”
J Phys. Chem. B
,
108
(
3
), pp.
846
852
. 10.1021/jp030663d
24.
Zhang
,
Y.
,
Tang
,
Y.
,
Wang
,
N.
,
Yu
,
D.
,
Lee
,
C.
,
Bello
,
I.
, and
Lee
,
S.
,
1998
, “
Silicon Nanowires Prepared by Laser Ablation at High Temperature
,”
Appl. Phys. Lett.
,
72
(
15
), pp.
1835
1837
. 10.1063/1.121199
25.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
De Boor
,
J.
, and
Gösele
,
U.
,
2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review
,”
Adv. Mater.
,
23
(
2
), pp.
285
308
. 10.1002/adma.201001784
26.
McSweeney
,
W.
,
Geaney
,
H.
, and
O’Dwyer
,
C.
,
2015
, “
Metal-Assisted Chemical Etching of Silicon and the Behavior of Nanoscale Silicon Materials as Li-Ion Battery Anodes
,”
Nano Res.
,
8
(
5
), pp.
1395
1442
. 10.1007/s12274-014-0659-9
27.
Geyer
,
N.
,
Fuhrmann
,
B.
,
Huang
,
Z. P.
,
De Boor
,
J.
,
Leipner
,
H. S.
, and
Werner
,
P.
,
2012
, “
Model for the Mass Transport During Metal-Assisted Chemical Etching With Contiguous Metal Films as Catalysts
,”
J. Phys. Chem. C
,
116
(
24
), pp.
13446
13451
. 10.1021/jp3034227
28.
Zhang
,
M. L.
,
Peng
,
K. Q.
,
Fan
,
X.
,
Jie
,
J. S.
,
Zhang
,
R. Q.
,
Lee
,
S. T.
, and
Wong
,
N. B.
,
2008
, “
Preparation of Large-Area Uniform Silicon Nanowires Arrays Through Metal-Assisted Chemical Etching
,”
J. Phys. Chem. C
,
112
(
12
), pp.
4444
4450
. 10.1021/jp077053o
29.
Baek
,
S. H.
,
Park
,
J. S.
,
Jeong
,
Y. M.
, and
Kim
,
J. H.
,
2016
, “
Facile Synthesis of Ag-Coated Silicon Nanowires as Anode Materials for High-Performance Rechargeable Lithium Battery
,”
J. Alloys Compd.
,
660
, pp.
387
391
. 10.1016/j.jallcom.2015.11.131
30.
Lajvardi
,
M.
,
Eshghi
,
H.
,
Izadifard
,
M.
,
Ghazi
,
M.
, and
Goodarzi
,
A.
,
2016
, “
Effects of Silver and Gold Catalytic Activities on the Structural and Optical Properties of Silicon Nanowires
,”
Phys. E
,
75
, pp.
136
143
. 10.1016/j.physe.2015.09.007
31.
Yuan
,
C.
,
Zhai
,
Q.
, and
Dornfeld
,
D. A.
,
2012
, “
A Three Dimensional System Approach for Environmentally Sustainable Manufacturing
,”
CIRP Ann.-Manuf. Techn.
,
61
(
1
), pp.
39
42
. 10.1016/j.cirp.2012.03.105
32.
Yuan
,
C.
, and
Dornfeld
,
D. A.
,
2010
, “
A Schematic Method for Sustainable Material Selection of Toxic Chemicals in Design and Manufacturing
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091014
. 10.1115/1.4002199
33.
Yuan
,
C.
, and
Zhang
,
T
,
2013
, “Environmental Implications of Nano-Manufacturing,”
Green Manufacturing
,
D.
Dornfeld
, ed.,
Springer Press
,
Boston, MA
.
34.
Eckelman
,
M. J.
,
Zimmerman
,
J. B.
, and
Anastas
,
P. T.
,
2008
, “
Toward Green Nano: E-Factor Analysis of Several Nanomaterial Syntheses
,”
J. Ind. Ecol.
,
12
(
3
), pp.
316
328
. 10.1111/j.1530-9290.2008.00043.x
35.
Gutowski
,
T. G.
,
Branham
,
M. S.
,
Dahmus
,
J. B.
,
Jones
,
A. J.
,
Thiriez
,
A.
, and
Sekulic
,
D. P.
,
2009
, “
Thermodynamic Analysis of Resources Used in Manufacturing Processes
,”
Environ. Sci. Technol.
,
43
(
5
), pp.
1584
1590
. 10.1021/es8016655
36.
Yuan
,
C.
, and
Dornfeld
,
D. A.
,
2010
, “
Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030918
. 10.1115/1.4001686
37.
EPA, U.S.
,
2007
,
Nanotechnology White Paper
,
Environmental Protection Agency Press
,
Washington, DC
.
38.
Dreher
,
K. L.
,
2004
, “
Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles
,”
Toxicol. Sci.
,
77
(
1
), pp.
3
5
. 10.1093/toxsci/kfh041
39.
Hussain
,
S. M.
,
Javorina
,
A. K.
,
Schrand
,
A. M.
,
Duhart
,
H. M.
,
Ali
,
S. F.
, and
Schlager
,
J. J.
,
2006
, “
The Interaction of Manganese Nanoparticles With PC-12 Cells Induces Dopamine Depletion
,”
Toxicol. Sci.
,
92
(
2
), pp.
456
463
. 10.1093/toxsci/kfl020
40.
Hussain
,
S.
,
Hess
,
K.
,
Gearhart
,
J.
,
Geiss
,
K.
, and
Schlager
,
J.
,
2005
, “
In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells
,”
Toxicol. Sci.
,
19
(
7
), pp.
975
983
. 10.1016/j.tiv.2005.06.034
41.
Braydich-Stolle
,
L.
,
Hussain
,
S.
,
Schlager
,
J. J.
, and
Hofmann
,
M.-C.
,
2005
, “
In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells
,”
Toxicol. Sci.
,
88
(
2
), pp.
412
419
. 10.1093/toxsci/kfi256
42.
Yu
,
S.-J.
,
Yin
,
Y.-G.
, and
Liu
,
J.-F.
,
2013
, “
Silver Nanoparticles in the Environment
,”
Environ. Sci. Proc. Imp.
,
15
(
1
), pp.
78
92
. 10.1039/C2EM30595J
43.
Bachtouli
,
N.
,
Aouida
,
S.
, and
Bessais
,
B.
,
2014
, “
Formation Mechanism of Porous Silicon Nanowires in HF/AgNO3 Solution
,”
Micropor. Mesopor. Mater.
,
187
, pp.
82
85
. 10.1016/j.micromeso.2013.11.048
44.
Smith
,
Z. R.
,
Smith
,
R. L.
, and
Collins
,
S. D.
,
2013
, “
Mechanism of Nanowire Formation in Metal Assisted Chemical Etching
,”
Electrochim. Acta
,
92
, pp.
139
147
. 10.1016/j.electacta.2012.12.075
45.
Han
,
H.
,
Huang
,
Z.
, and
Lee
,
W.
,
2014
, “
Metal-Assisted Chemical Etching of Silicon and Nanotechnology Applications
,”
Nano Today
,
9
(
3
), pp.
271
304
. 10.1016/j.nantod.2014.04.013
46.
Huang
,
Z.
,
Shimizu
,
T.
,
Senz
,
S.
,
Zhang
,
Z.
,
Geyer
,
N.
, and
Gosele
,
U.
,
2010
, “
Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon
,”
J. Phys. Chem. C
,
114
(
24
), pp.
10683
10690
. 10.1021/jp911121q
47.
Ghafarinazari
,
A.
, and
Mozafari
,
M.
,
2014
, “
A Systematic Study on Metal-Assisted Chemical Etching of High Aspect Ratio Silicon Nanostructures
,”
J. Alloy Compd.
,
616
, pp.
442
448
. 10.1016/j.jallcom.2014.07.044
48.
Choi
,
K.
,
Song
,
Y.
,
Ki
,
B.
, and
Oh
,
J.
,
2017
, “
Nonlinear Etch Rate of Au-Assisted Chemical Etching of Silicon
,”
ACS Omega
,
2
(
5
), pp.
2100
2105
. 10.1021/acsomega.7b00232
49.
Song
,
A.
,
Yun
,
S.
,
Lokhande
,
V.
, and
Ji
,
T.
,
2016
, “
Rate Controlled Metal Assisted Chemical Etching to Fabricate Vertical and Uniform Si Nanowires
,”
Proceedings of SPIE 9759, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX
,
San Francisco, CA
,
Mar. 14
.10.1117/12.2212105
50.
Chartier
,
C.
,
Bastide
,
S.
, and
Lévy-Clément
,
C.
,
2008
, “
Metal-Assisted Chemical Etching of Silicon in HF–H2O2
,”
Electrochim. Acta
,
53
(
17
), pp.
5509
5516
. 10.1016/j.electacta.2008.03.009
51.
Kolasinski
,
K. W.
,
2015
, “
Electron Transfer During Metal-Assisted and Stain Etching of Silicon
,”
Semicond. Sci. Technol.
,
31
(
1
), p.
014002
. 10.1088/0268-1242/31/1/014002
52.
Qu
,
Y.
,
Liao
,
L.
,
Li
,
Y.
,
Zhang
,
H.
,
Huang
,
Y.
, and
Duan
,
X.
,
2009
, “
Electrically Conductive and Optically Active Porous Silicon Nanowires
,”
Nano Lett.
,
9
(
12
), pp.
4539
4543
. 10.1021/nl903030h
53.
Zhong
,
X.
,
Qu
,
Y.
,
Lin
,
Y.-C.
,
Liao
,
L.
, and
Duan
,
X.
,
2011
, “
Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires
,”
ACS Appl. Mater. Interfaces
,
3
(
2
), pp.
261
270
. 10.1021/am1009056
54.
Chen
,
C. Y.
,
Wu
,
C. S.
,
Chou
,
C. J.
, and
Yen
,
T. J.
,
2008
, “
Morphological Control of Single-Crystalline Silicon Nanowire Arrays Near Room Temperature
,”
Adv. Mater.
,
20
(
20
), pp.
3811
3815
. 10.1002/adma.200702788
55.
Lowell
,
S.
,
Shields
,
J. E.
,
Thomas
,
M. A.
, and
Thommes
,
M.
,
2012
,
Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density
,
Kluwer Academic Publishers
,
Norwell, MA
.
56.
Weidemann
,
S.
,
Kockert
,
M.
,
Wallacher
,
D.
,
Ramsteiner
,
M.
,
Mogilatenko
,
A.
,
Rademann
,
K.
, and
Fischer
,
S. F.
,
2015
, “
Controlled Pore Formation on Mesoporous Single Crystalline Silicon Nanowires: Threshold and Mechanisms
,”
J. Nanomater.
,
16
(
1
), p.
171
. 10.1155/2015/672305
57.
Gohier
,
A.
,
Laïk
,
B.
,
Pereira-Ramos
,
J.-P.
,
Cojocaru
,
C. S.
, and
Tran-Van
,
P.
,
2012
, “
Influence of the Diameter Distribution on the Rate Capability of Silicon Nanowires for Lithium-Ion Batteries
,”
J. Power Sources
,
203
, pp.
135
139
. 10.1016/j.jpowsour.2011.12.023
58.
Wang
,
F. F.
,
Gao
,
X. F.
,
Ma
,
L. L.
, and
Yuan
,
C.
,
2019
, “
Nanoparticle Emissions From Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries
,”
ASME J. Micro Nano-Manuf.
,
7
(
1
), p.
011001
. 10.1115/1.4042383
59.
Xu
,
W. L.
, and
Flake
,
J. C.
,
2010
, “
Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
157
(
1
), pp.
A41
A45
. 10.1149/1.3251341
60.
Li
,
B. B.
,
Gao
,
X. F.
,
Li
,
J. Y.
, and
Yuan
,
C.
,
2014
, “
Life Cycle Environmental Impact of High-Capacity Lithium Ion Battery With Silicon Nanowires Anode for Electric Vehicles
,”
Environ. Sci. Technol.
,
48
(
5
), pp.
3047
3055
. 10.1021/es4037786
You do not currently have access to this content.