Abstract

The capacity fade in lithium-ion battery (LIB) of high energy density using Si/C core–shell particle anode is one of the major barriers blocking its wide application. However, the underlying mechanism of electro-chemo-mechanical degradation remains unclear. In this study, we propose and validate a multiscale model (electrode level and particle level), considering electrochemical–mechanical coupling and cohesive zone method at the particle level. The effects of charging rate, core/shell ratio, and mechanical properties of the shell on the separation and capacity fade are discussed. We discover that larger charging rate, smaller core/shell ratio, and stiffer shell can mitigate the core–shell separation gap, leading to higher capacity retention. Results shed light on the degradation mechanism of Si/C core–shell anode and provide design guidance for Si/C anode materials in minimizing the capacity fade and safe battery charging/discharging strategy.

References

1.
Qiao
,
Y.
,
Jiang
,
K.
,
Deng
,
H.
, and
Zhou
,
H.
,
2019
, “
A High-Energy-Density and Long-Life Lithium-Ion Battery via Reversible Oxide–Peroxide Conversion
,”
Nat. Catal.
,
2
(
11
), pp.
1035
1044
. 10.1038/s41929-019-0362-z
2.
Fang
,
X.
,
Ge
,
M.
,
Rong
,
J.
, and
Zhou
,
C.
,
2013
, “
Graphene-Oxide-Coated LiNi 0.5 Mn 1.5 O 4 as High Voltage Cathode for Lithium Ion Batteries With High Energy Density and Long Cycle Life
,”
J. Mater. Chem. A
,
1
(
12
), pp.
4083
4088
. 10.1039/c3ta01534c
3.
Ma
,
J.
,
Sung
,
J.
,
Hong
,
J.
,
Chae
,
S.
,
Kim
,
N.
,
Choi
,
S.-H.
,
Nam
,
G.
,
Son
,
Y.
,
Kim
,
S. Y.
,
Ko
,
M.
, and
Cho
,
J.
,
2019
, “
Towards Maximized Volumetric Capacity via Pore-Coordinated Design for Large-Volume-Change Lithium-Ion Battery Anodes
,”
Nat. Commun.
,
10
(
1
), p.
475
. 10.1038/s41467-018-08233-3
4.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
. 10.1021/nn204476h
5.
Ma
,
Z.
,
Li
,
T.
,
Huang
,
Y. L.
,
Liu
,
J.
,
Zhou
,
Y.
, and
Xue
,
D.
,
2013
, “
Critical Silicon-Anode Size for Averting Lithiation-Induced Mechanical Failure of Lithium-Ion Batteries
,”
RSC Adv.
,
3
(
20
), pp.
7398
7402
. 10.1039/c3ra41052h
6.
Chen
,
Q.
,
Sun
,
S.
,
Zhai
,
T.
,
Yang
,
M.
,
Zhao
,
X.
, and
Xia
,
H.
,
2018
, “
Yolk–Shell NiS2 Nanoparticle-Embedded Carbon Fibers for Flexible Fiber-Shaped Sodium Battery
,”
Adv. Energy Mater.
,
8
(
19
), p.
1800054
. 10.1002/aenm.201800054
7.
Chen
,
X.
,
Chen
,
C.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Yang
,
D.
, and
Dong
,
A.
,
2019
, “
Exploiting Oleic Acid to Prepare Two-Dimensional Assembly of Si@Graphitic Carbon Yolk-Shell Nanoparticles for Lithium-Ion Battery Anodes
,”
Nano Res.
,
12
(
3
), pp.
631
636
. 10.1007/s12274-018-2270-y
8.
Li
,
X.
,
Xing
,
Y.
,
Xu
,
J.
,
Deng
,
Q.
, and
Shao
,
L.-H.
,
2020
, “
Uniform Yolk–Shell Structured Si–C Nanoparticles as a High Performance Anode Material for the Li-Ion Battery
,”
Chem. Commun.
,
56
(
3
), pp.
364
367
. 10.1039/C9CC07997A
9.
Liu
,
N.
,
Liu
,
J.
,
Jia
,
D.
,
Huang
,
Y.
,
Luo
,
J.
,
Mamat
,
X.
,
Yu
,
Y.
,
Dong
,
Y.
, and
Hu
,
G.
,
2019
, “
Multi-core Yolk-Shell Like Mesoporous Double Carbon-Coated Silicon Nanoparticles as Anode Materials for Lithium-Ion Batteries
,”
Energy Stor. Mater.
,
18
, pp.
165
173
. 10.1016/j.ensm.2018.09.019
10.
Wu
,
P.
,
Guo
,
C.
,
Han
,
J.
,
Yu
,
K.
,
Dong
,
X.
,
Yue
,
G.
,
Yue
,
H.
,
Guan
,
Y.
, and
Liu
,
A.
,
2018
, “
Fabrication of Double Core–Shell Si-Based Anode Materials With Nanostructure for Lithium-Ion Battery
,”
RSC Adv.
,
8
(
17
), pp.
9094
9102
. 10.1039/C7RA13606D
11.
Müller
,
S.
,
Pietsch
,
P.
,
Brandt
,
B.-E.
,
Baade
,
P.
,
De Andrade
,
V.
,
De Carlo
,
F.
, and
Wood
,
V.
,
2018
, “
Quantification and Modeling of Mechanical Degradation in Lithium-Ion Batteries Based on Nanoscale Imaging
,”
Nat. Commun.
,
9
(
1
), p.
2340
. 10.1038/s41467-018-04477-1
12.
Xu
,
R.
,
Yang
,
Y.
,
Yin
,
F.
,
Liu
,
P.
,
Cloetens
,
P.
,
Liu
,
Y.
,
Lin
,
F.
, and
Zhao
,
K.
,
2019
, “
Heterogeneous Damage in Li-Ion Batteries: Experimental Analysis and Theoretical Modeling
,”
J. Mech. Phys. Solids
,
129
, pp.
160
183
. 10.1016/j.jmps.2019.05.003
13.
Dimov
,
N.
,
Kugino
,
S.
, and
Yoshio
,
M.
,
2004
, “
Mixed Silicon–Graphite Composites as Anode Material for Lithium Ion Batteries: Influence of Preparation Conditions on the Properties of the Material
,”
J. Power Sources
,
136
(
1
), pp.
108
114
. 10.1016/j.jpowsour.2004.05.012
14.
Zhao
,
Y.
,
Stein
,
P.
,
Bai
,
Y.
,
Al-Siraj
,
M.
,
Yang
,
Y.
, and
Xu
,
B.-X.
,
2019
, “
A Review on Modeling of Electro-chemo-mechanics in Lithium-Ion Batteries
,”
J. Power Sources
,
413
, pp.
259
283
. 10.1016/j.jpowsour.2018.12.011
15.
Nishikawa
,
K.
,
Munakata
,
H.
, and
Kanamura
,
K.
,
2013
, “
In-situ Observation of one Silicon Particle During the First Charging
,”
J. Power Sources
,
243
, pp.
630
634
. 10.1016/j.jpowsour.2013.06.052
16.
Liu
,
X. H.
, and
Huang
,
J. Y.
,
2011
, “
In Situ TEM Electrochemistry of Anode Materials in Lithium Ion Batteries
,”
Energy Environ. Sci.
,
4
(
10
), pp.
3844
3860
. 10.1039/c1ee01918j
17.
Wang
,
C.-M.
,
Li
,
X.
,
Wang
,
Z.
,
Xu
,
W.
,
Liu
,
J.
,
Gao
,
F.
,
Kovarik
,
L.
,
Zhang
,
J.-G.
,
Howe
,
J.
,
Burton
,
D. J.
,
Liu
,
Z.
,
Xiao
,
X.
,
Thevuthasan
,
S.
, and
Baer
,
D. R.
,
2012
, “
In Situ TEM Investigation of Congruent Phase Transition and Structural Evolution of Nanostructured Silicon/Carbon Anode for Lithium Ion Batteries
,”
Nano Lett.
,
12
(
3
), pp.
1624
1632
. 10.1021/nl204559u
18.
Mao
,
Y.
,
Wang
,
X.
,
Xia
,
S.
,
Zhang
,
K.
,
Wei
,
C.
,
Bak
,
S.
,
Shadike
,
Z.
,
Liu
,
X.
,
Yang
,
Y.
,
Xu
,
R.
,
Pianetta
,
P.
,
Ermon
,
S.
,
Stavitski
,
E.
,
Zhao
,
K.
,
Xu
,
Z.
,
Lin
,
F.
,
Yang
,
X.-Q.
,
Hu
,
E.
, and
Liu
,
Y.
,
2019
, “
High-Voltage Charging-Induced Strain, Heterogeneity, and Micro-cracks in Secondary Particles of a Nickel-Rich Layered Cathode Material
,”
Adv. Funct. Mater.
,
29
(
18
), p.
1900247
. 10.1002/adfm.201900247
19.
Huang
,
S.
,
Fan
,
F.
,
Li
,
J.
,
Zhang
,
S.
, and
Zhu
,
T.
,
2013
, “
Stress Generation During Lithiation of High-Capacity Electrode Particles in Lithium Ion Batteries
,”
Acta Mater.
,
61
(
12
), pp.
4354
4364
. 10.1016/j.actamat.2013.04.007
20.
Chason
,
E.
, and
Sheldon
,
B. W.
,
2003
, “
Monitoring Stress in Thin Films During Processing
,”
Surf. Eng.
,
19
(
5
), pp.
387
391
. 10.1179/026708403225010118
21.
Koerver
,
R.
,
Aygün
,
I.
,
Leichtweiß
,
T.
,
Dietrich
,
C.
,
Zhang
,
W.
,
Binder
,
J. O.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes
,”
Chem. Mater.
,
29
(
13
), pp.
5574
5582
. 10.1021/acs.chemmater.7b00931
22.
Zhao
,
K.
,
Pharr
,
M.
,
Hartle
,
L.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Fracture and Debonding in Lithium-Ion Batteries With Electrodes of Hollow Core–Shell Nanostructures
,”
J. Power Sources
,
218
, pp.
6
14
. 10.1016/j.jpowsour.2012.06.074
23.
Jia
,
Z.
, and
Liu
,
W. K.
,
2016
, “
Analytical Model on Stress-Regulated Lithiation Kinetics and Fracture of Si-C Yolk-Shell Anodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
A940
A946
. 10.1149/2.0601606jes
24.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
. 10.1016/j.jpowsour.2009.01.021
25.
Gao
,
X.
,
He
,
P.
,
Ren
,
J.
, and
Xu
,
J.
,
2019
, “
Modeling of Contact Stress among Compound Particles in High Energy Lithium-Ion Battery
,”
Energy Stor. Mater.
,
18
, pp.
23
33
. 10.1016/j.ensm.2019.02.007
26.
Gao
,
X.
,
Lu
,
W.
, and
Xu
,
J.
,
2020
, “
Modeling Framework for Multiphysics-Multiscale Behavior of Si–C Composite Anode
,”
J. Power Sources
,
449
, p.
227501
. 10.1016/j.jpowsour.2019.227501
27.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Jiang
,
H.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Multiphysics Coupled Computational Model for Commercialized Si/Graphite Composite Anode
,”
J. Power Sources
,
450
, p.
227667
. 10.1016/j.jpowsour.2019.227667
28.
Liu
,
B.
,
Wang
,
X.
,
Chen
,
H.-S.
,
Chen
,
S.
,
Yang
,
H.
,
Xu
,
J.
,
Jiang
,
H.
, and
Fang
,
D.-N.
,
2019
, “
A Simultaneous Multiscale and Multiphysics Model and Numerical Implementation of a Core-Shell Model for Lithium-Ion Full-Cell Batteries
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041005
. 10.1115/1.4042432
29.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
. 10.1016/j.jmps.2011.01.003
30.
Di Leo
,
C. V.
,
Rejovitzky
,
E.
, and
Anand
,
L.
,
2015
, “
Diffusion–Deformation Theory for Amorphous Silicon Anodes: The Role of Plastic Deformation on Electrochemical Performance
,”
Int. J. Solid Struct.
,
67–68
, pp.
283
296
. 10.1016/j.ijsolstr.2015.04.028
31.
Bhandakkar
,
T. K.
, and
Gao
,
H.
,
2010
, “
Cohesive Modeling of Crack Nucleation Under Diffusion Induced Stresses in a Thin Strip: Implications on the Critical Size for Flaw Tolerant Battery Electrodes
,”
Int. J. Solid Struct.
,
47
(
10
), pp.
1424
1434
. 10.1016/j.ijsolstr.2010.02.001
32.
Concurrent Reaction and Plasticity During Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries
,
2012
, ECS Meeting Abstracts.
33.
Bucci
,
G.
,
Swamy
,
T.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2017
, “
Modeling of Internal Mechanical Failure of All-Solid-State Batteries During Electrochemical Cycling, and Implications for Battery Design
,”
J. Mater. Chem. A
,
5
(
36
), pp.
19422
19430
. 10.1039/C7TA03199H
34.
Shi
,
F.
,
Song
,
Z.
,
Ross
,
P. N.
,
Somorjai
,
G. A.
,
Ritchie
,
R. O.
, and
Komvopoulos
,
K.
,
2016
, “
Failure Mechanisms of Single-Crystal Silicon Electrodes in Lithium-Ion Batteries
,”
Nat. Commun.
,
7
(
1
), p.
11886
. 10.1038/ncomms11886
35.
Cui
,
W. C.
,
Wisnom
,
M. R.
, and
Jones
,
M.
,
1992
, “
A Comparison of Failure Criteria to Predict Delamination of Unidirectional Glass/Epoxy Specimens Waisted Through the Thickness
,”
Composites
,
23
(
3
), pp.
158
166
. 10.1016/0010-4361(92)90436-X
36.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
. 10.1016/0266-3538(96)00005-X
37.
Cho
,
I.
,
Choi
,
J.
,
Kim
,
K.
,
Ryou
,
M.-H.
, and
Lee
,
Y. M.
,
2015
, “
A Comparative Investigation of Carbon Black (Super-P) and Vapor-Grown Carbon Fibers (VGCFs) as Conductive Additives for Lithium-Ion Battery Cathodes
,”
RSC Adv.
,
5
(
115
), pp.
95073
95078
. 10.1039/C5RA19056H
38.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
, and
Newman
,
J.
,
2013
, “
Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A394
A403
. 10.1149/2.008303jes
39.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J. M.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
. 10.1149/1.1836921
40.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2016
, “
Study of Lithium Diffusivity in Amorphous Silicon via Finite Element Analysis
,”
J. Power Sources
,
307
, pp.
77
85
. 10.1016/j.jpowsour.2015.12.082
41.
Wang
,
X.
,
Singh
,
S. S.
,
Ma
,
T.
,
Lv
,
C.
,
Chawla
,
N.
, and
Jiang
,
H.
,
2017
, “
Quantifying Electrochemical Reactions and Properties of Amorphous Silicon in a Conventional Lithium-Ion Battery Configuration
,”
Chem. Mater.
,
29
(
14
), pp.
5831
5840
. 10.1021/acs.chemmater.7b00701
42.
Nyman
,
A.
,
Zavalis
,
T. G.
,
Elger
,
R.
,
Behm
,
M. R.
, and
Lindbergh
,
G. R.
,
2010
, “
Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations
,”
J. Electrochem. Soc.
,
157
(
11
), p.
A1236
. 10.1149/1.3486161
You do not currently have access to this content.