Abstract

To uphold the temperature within an acceptable range of Li-ion batteries in electric vehicles, appropriate thermo-regulation strategies should be implemented. If the temperature is increased beyond the permissible range during the charging/discharging cycle, there is a possibility of overheating and electrolyte fire, which leads to degradation of the lifecycle and capability of the cell. This research suggests the usage of nanofluids as a heat transfer medium for active thermal management. A numerical approach is employed to analyze the effectiveness of nanofluids and their impact on the temperature gradient within the battery module. The thermal performance of water and water:ethylene glycol-based nanofluid is numerically examined where the water shows better performance due to excellent thermal properties, whereas the dispersion of nanoparticles in base fluids shows a notable effect on reducing the temperature of the battery module, while a limited effect on temperature uniformity. Besides, an enhancement in performance is seen with the growth in the volume fraction of nanoparticles amid an increased pumping power at the same time. The impact of different functioning parameters such as inlet velocity, coolant temperature, and discharge rate is also analyzed for water-based nanofluids. Results indicate that with an increase in coolant velocity, alumina nanofluid can provide better uniformity and reduce the battery module temperature than the base fluid.

References

1.
Chan
,
C. C.
,
2007
, “
The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles
,”
Proc. IEEE
,
95
(
4
), pp.
704
718
. 10.1109/JPROC.2007.892489
2.
Zubi
,
G.
,
Dufo-López
,
R.
,
Carvalho
,
M.
, and
Pasaoglu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renew. Sustain. Energy Rev.
,
89
, pp.
292
308
. 10.1016/j.rser.2018.03.002
3.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
. 10.1016/j.apenergy.2015.11.034
4.
Ping
,
P.
,
Wang
,
Q.
,
Chung
,
Y.
, and
Wen
,
J.
,
2017
, “
Modelling Electro-Thermal Response of Lithium-Ion Batteries From Normal to Abuse Conditions
,”
Appl. Energy
,
205
, pp.
1327
1344
. 10.1016/j.apenergy.2017.08.073
5.
Wu
,
S.
,
Xiong
,
R.
,
Li
,
H.
,
Nian
,
V.
, and
Ma
,
S.
,
2020
, “
The State of the Art on Preheating Lithium-Ion Batteries in Cold Weather
,”
J. Energy Storage
,
27
, p.
101059
. 10.1016/j.est.2019.101059
6.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), p.
R1
R25
. 10.1149/1.3515880
7.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, pp.
101155
. 10.1016/j.est.2019.101155
8.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
9.
Duan
,
X.
, and
Naterer
,
G. F.
,
2010
, “
Heat Transfer in Phase Change Materials for Thermal Management of Electric Vehicle Battery Modules
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5176
5182
. 10.1016/j.ijheatmasstransfer.2010.07.044
10.
Sabbah
,
R.
,
Kizilel
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Active (Air-Cooled) vs. Passive (Phase Change Material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution
,”
J. Power Sources
,
182
(
2
), pp.
630
638
. 10.1016/j.jpowsour.2008.03.082
11.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
Y. B.
,
2014
, “
Experimental Study of a Passive Thermal Management System for High-Powered Lithium Ion Batteries Using Porous Metal Foam Saturated With Phase Change Materials
,”
J. Power Sources
,
255
, pp.
9
15
. 10.1016/j.jpowsour.2014.01.006
12.
Lv
,
Y.
,
Yang
,
X.
,
Li
,
X.
,
Zhang
,
G.
,
Wang
,
Z.
, and
Yang
,
C.
,
2016
, “
Experimental Study on a Novel Battery Thermal Management Technology Based on Low Density Polyethylene-Enhanced Composite Phase Change Materials Coupled With Low Fins
,”
Appl. Energy
,
178
, pp.
376
382
. 10.1016/j.apenergy.2016.06.058
13.
Lv
,
Y.
,
Situ
,
W.
,
Yang
,
X.
,
Zhang
,
G.
, and
Wang
,
Z.
,
2018
, “
A Novel Nanosilica-Enhanced Phase Change Material With Anti-Leakage and Anti-Volume-Changes Properties for Battery Thermal Management
,”
Energy Convers. Manage.
,
163
, pp.
250
259
. 10.1016/j.enconman.2018.02.061
14.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
. 10.1016/j.enconman.2017.08.016
15.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G. H.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
. 10.1016/j.applthermaleng.2015.10.015
16.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
. 10.1016/j.applthermaleng.2015.04.012
17.
Pan
,
Y.-w.
,
Hua
,
Y.
,
Zhou
,
S.
,
He
,
R.
,
Zhang
,
Y.
,
Yang
,
S.
,
Liu
,
X.
,
Lian
,
Y.
,
Yan
,
X.
, and
Wu
,
B.
,
2020
, “
A Computational Multi-Node Electro-Thermal Model for Large Prismatic Lithium-Ion Batteries
,”
J. Power Sources
,
459
, p.
228070
. 10.1016/j.jpowsour.2020.228070
18.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Simulated Temperature Variations in a LiFePO4-20 Ah Battery During Discharge Process
,”
Appl. Energy
,
180
, pp.
504
515
. 10.1016/j.apenergy.2016.08.008
19.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Numerical Modeling and Experimental Investigation of a Prismatic Battery Subjected to Water Cooling
,”
Numer. Heat Transfer Part A Appl.
,
71
(
6
), pp.
626
637
. 10.1080/10407782.2016.1277938
20.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
. 10.1016/j.enconman.2016.08.063
21.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Dinda
,
S.
,
Singh
,
S. A.
, and
Datta
,
S. P.
,
2021
, “
Parametric Investigation to Optimize the Thermal Management of Pouch Type Lithium-Ion Batteries With Mini-Channel Cold Plates
,”
Int. J. Heat Mass Transfer
,
164
, p.
120568
. 10.1016/j.ijheatmasstransfer.2020.120568
22.
Zhao
,
C.
,
Sousa
,
A. C. M.
, and
Jiang
,
F.
,
2019
, “
Minimization of Thermal Non-Uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
129
, pp.
660
670
. 10.1016/j.ijheatmasstransfer.2018.10.017
23.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
. 10.1016/j.applthermaleng.2016.02.070
24.
Panchal
,
S.
,
Mathewson
,
S.
,
Fraser
,
R.
,
Culham
,
R.
, and
Fowler
,
M.
,
2015
, “
Thermal Management of Lithium-Ion Pouch Cell With Indirect Liquid Cooling Using Dual Cold Plates Approach
,”
SAE Int. J. Altern. Powertrains
,
4
(
2
), pp.
293
307
. 10.4271/2015-01-1184
25.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Thermal Modeling and Validation of Temperature Distributions in a Prismatic Lithium-Ion Battery at Different Discharge Rates and Varying Boundary Conditions
,”
Appl. Therm. Eng.
,
96
, pp.
190
199
. 10.1016/j.applthermaleng.2015.11.019
26.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
27.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, “
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
. 10.1016/j.applthermaleng.2019.04.033
28.
Gray
,
A.
,
1894
, “
Recent Researches in Electricity and Magnetism
,”
Nature
,
49
(
1268
), pp.
357
359
. 10.1038/049357a0
29.
Ghadimi
,
A.
,
Saidur
,
R.
, and
Metselaar
,
H. S. C.
,
2011
, “
A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4051
4068
. 10.1016/j.ijheatmasstransfer.2011.04.014
30.
Townsend
,
J.
, and
Christianson
,
R. J.
,
2009
, “
Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031006
. 10.1115/1.4001123
31.
Ho
,
C. J.
,
Wei
,
L. C.
, and
Li
,
Z. W.
,
2010
, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
96
103
. 10.1016/j.applthermaleng.2009.07.003
32.
Huo
,
Y.
, and
Rao
,
Z.
,
2015
, “
The Numerical Investigation of Nanofluid Based Cylinder Battery Thermal Management Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
91
, pp.
374
384
. 10.1016/j.ijheatmasstransfer.2015.07.128
33.
Bahiraei
,
F.
,
Ghalkhani
,
M.
,
Fartaj
,
A.
, and
Nazri
,
G. A.
,
2017
, “
A Pseudo 3D Electrochemical-Thermal Modeling and Analysis of a Lithium-Ion Battery for Electric Vehicle Thermal Management Applications
,”
Appl. Therm. Eng.
,
125
, pp.
904
918
. 10.1016/j.applthermaleng.2017.07.060
34.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
. 10.1149/1.2221597
35.
Mondal
,
B.
,
Lopez
,
C. F.
, and
Mukherjee
,
P. P.
,
2017
, “
Exploring the Efficacy of Nanofluids for Lithium-Ion Battery Thermal Management
,”
Int. J. Heat Mass Transfer
,
112
, pp.
779
794
. 10.1016/j.ijheatmasstransfer.2017.04.130
36.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4554
4571
. 10.1016/j.rser.2011.07.096
37.
Yun
,
L.
,
Sandoval
,
J.
,
Zhang
,
J.
,
Gao
,
L.
,
Garg
,
A.
, and
Wang
,
C. T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021011
. 10.1115/1.4042093
38.
De Vita
,
A.
,
Maheshwari
,
A.
,
Destro
,
M.
,
Santarelli
,
M.
, and
Carello
,
M.
,
2017
, “
Transient Thermal Analysis of a Lithium-Ion Battery Pack Comparing Different Cooling Solutions for Automotive Applications
,”
Appl. Energy
,
206
, pp.
101
112
. 10.1016/j.apenergy.2017.08.184
39.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
. 10.1149/1.2113792
40.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
613
630
. 10.1590/S0104-66322008000400001
41.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2008
, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1221
1232
. 10.1016/j.ijheatfluidflow.2008.01.005
42.
Siruvuri
,
S. D. V. S. S. V.
, and
Budarapu
,
P. R.
,
2020
, “
Studies on Thermal Management of Lithium-Ion Battery Pack Using Water as the Cooling Fluid
,”
J. Energy Storage
,
29
, p.
101377
. 10.1016/j.est.2020.101377
43.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Transient Electrochemical Heat Transfer Modeling and Experimental Validation of a Large Sized LiFePO4/Graphite Battery
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1239
1251
. 10.1016/j.ijheatmasstransfer.2017.03.005
44.
Li
,
G.
, and
Li
,
S.
,
2015
, “
Physics-Based CFD Simulation of Lithium-Ion Battery Under the FUDS Driving Cycle
,”
ECS Trans.
,
64
(
33
), pp.
1
14
. 10.1149/06433.0001ecst
45.
Al Hallaj
,
S.
,
Prakash
,
J.
, and
Selman
,
J.
,
2000
, “
Characterization of Commercial Li-Ion Batteries Using Electrochemical–Calorimetric Measurements
,”
J. Power Sources
,
87
, pp.
186
194
. 10.1016/S0378-7753(99)00472-3
46.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
You do not currently have access to this content.