Abstract

Effective thermal management of high power density batteries is essential for battery performance, life, and safety. This paper experimentally investigates direct mineral oil jet impingement cooling of the lithium-ion (Li-ion) battery pack. For the first time, experimental results of mineral oil-based cooling of batteries are reported. Both charging and discharging characteristics on temperature uniformity and of a Li-ion pack are considered. Temperature uniformity among cells, as well as within individual cells, is experimentally measured. As a baseline, cooling of the battery pack by free-convective airflow is also reported. Two different jetting configurations: (a) submerged jet and (b) direct-jet impingement are considered. For the highest charge-discharge rates considered (2C charge and 3C discharge), mineral oil nearly maintains uniform skin temperature among the cells (less than 1 °C) as well as within the cell. Based on the results obtained, modular jet oil cooling is an excellent cooling solution of lithium-ion packs applicable to stationary electrical storage and transportation applications.

References

1.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
.
2.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
3.
Pesaran
,
A.
,
Keyser
,
M.
,
Kim
,
G.
,
Santhanagopalan
,
S.
, and
Smith
,
K.
,
2013
, “
Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles
”,
Advanced Automotive Battery Conference
, NREL/PR-5400-57747.
4.
An
,
K.
,
Barai
,
P.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2014
, “
Probing the Thermal Implications in Mechanical Degradation of Lithium-Ion Battery Electrodes
,”
J. Electrochem Soc.
,
161
(
6
), pp.
A1058
A1070
.
5.
Wang
,
Q.
,
Jiang
,
B.
,
Li
,
B.
, and
Yan
,
Y.
,
2006
, “
A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renew. Sustain. Energy Rev.
,
64
, pp.
106
128
.
6.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4554
4571
.
7.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem Soc.
,
147
(
9
), pp.
3231
3236
.
8.
Duan
,
X.
, and
Naterer
,
G. F.
,
2010
, “
Heat Transfer in Phase Change Materials for Thermal Management of Electric Vehicle Battery Modules
,”
Int. J. Heat. Mass Transfer
,
53
(
23–24
), pp.
5176
5182
.
9.
Rao
,
Z.
,
Wang
,
S.
,
Wu
,
M.
,
Lin
,
Z.
, and
Li
,
F.
,
2013
, “
Experimental Investigation on Thermal Management of Electric Vehicle Battery With Heat Pipe
,”
Energy Convers. Manag.
,
65
, pp.
92
97
.
10.
Greco
,
A.
,
Cao
,
D.
,
Jiang
,
X.
, and
Yang
,
H.
,
2014
, “
A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes
,”
J. Power Sources
,
257
, pp.
344
355
.
11.
Yi
,
J.
,
Kim
,
U. S.
,
Shin
,
C. B.
,
Han
,
T.
, and
Park
,
S.
,
2013
, “
Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances Between Current Collecting Tab and Lead Wire
,”
J. Electrochem Soc.
,
160
(
3
), pp.
A437
A443
.
12.
Zhao
,
R.
,
Zhang
,
S.
,
Liu
,
J.
, and
Liu
,
J.
,
2015
, “
A Review of Thermal Performance Improving Methods of Lithium Ion Battery: Electrode Modification and Thermal Management System
,”
J. Power Sources
,
299
, pp.
557
577
.
13.
Pesaran
,
A. A.
,
2001
, “
Battery Thermal Management in EVs and HEVs, Issues and Solutions
,”
Las Vegas, USA
.
14.
Guodong
,
X.
,
Lei
,
C.
, and
Guanglong
,
B.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
.
15.
Eiland
,
R.
,
Fernandes
,
J. E.
,
Vallejo
,
M.
,
Siddarth
,
A.
,
Agonafer
,
D.
, and
Mulay
,
V.
,
2017
, “
Thermal Performance and Efficiency of a Mineral Oil Immersed Server Over Varied Environmental Operating Conditions
,”
ASME J. Electron. Packag.
,
139
(
4
), p.
041005
.
16.
Tuma
,
P. E.
,
2010
, “
The Merits of Open Bath Immersion Cooling of Datacom Equipment
,”
26th IEEE SEMI-THERM Symposium
,
Santa Clara, CA
,
Feb. 21–25
, pp.
123
132
.
17.
Sarangi
,
S.
,
Kuhn
,
W. A.
,
Rider
,
S.
,
Wright
,
C.
, and
Krishnan
,
S.
, 2015, “
Evaluation of Cooling Technologies for Xeon Phi Based High Performance Computing Clusters
,”
IPAC
, pp.
K2015
48640
. V001T09A046;
10
pages.
18.
Kim
,
G. H.
, and
Pesaran
,
A.
,
2006
, “
Battery Thermal Management System Design Modeling
,”
22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition
,
Yokohama, Japan
,
Oct. 23–28
.
19.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
.
20.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.
21.
van Gils
,
R. W.
,
Danilov
,
D.
,
Notten
,
P. H. L.
,
Speetjens
,
M. F. M.
, and
Nijmeijer
,
H.
,
2014
, “
Battery Thermal Management by Boiling Heat-Transfer
,”
Energy Convers. Manage.
,
79
, pp.
9
17
.
22.
Liu
,
G.
,
Oayang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
Han
,
X.
,
2014
, “
Analysis of the Heat Generation of Lithium-Ion Battery During Charging and Discharging Considering Different Influencing Factors
,”
J. Therm. Anal. Calorim.
,
116
(
2
), pp.
1001
1010
.
23.
Duh
,
Y.-S.
,
Lin
,
K. H.
, and
Kao
,
C.-S.
,
2018
, “
Experimental Investigation and Visualization on Thermal Runaway of Hard Prismatic Lithium-Ion Batteries Used in Smart Phones
,”
J. Therm. Anal. Calorim.
,
132
(
3
), pp.
1677
1692
.
24.
Kekelia
,
B.
,
Bennion
,
K.
,
Feng
,
X.
,
Morena
,
G.
,
Cousineau
,
J. E.
,
Narumanchi
,
S.
, and
Tomerlin
,
J.
,
2019
, “
Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines with Automatic Transmission Fluid
,”
Presented at ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (IPACK2019)
,
Anaheim, CA
,
Oct. 7–9
.
25.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2015
, “
Experimental Study of oil Cooling Systems for Electric Motors
,”
Appl. Therm. Eng.
,
75
, pp.
1
13
.
You do not currently have access to this content.