Abstract

Metal-organic frameworks (MOFs) due to their porosity and well-defined structures are considered to be very promising electrode materials for the construction of high-performance supercapacitor (SC). In this paper, manganese-based metal-organic framework (Mn-MOF) were prepared on the surface of carbon cloth (CC) by a facile hydrothermal method. The morphology and structure of the electrode material were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Its electrochemical studies show that the Mn-MOF electrode materials exhibit lower charge transfer resistance, the excellent specific capacitance of 433.5 mF/cm2 in 1.0 M Na2SO4 aqueous solution at the current density of 0.8 mA/cm2. It is noteworthy that the flexible electrode have excellent cycle stability and 105% capacitance retention even after 5000 cycles at a current density of 5 mA/cm2. The excellent electrochemical performance of Mn-MOF/CC flexible electrode materials can be attributed to its three-dimensional porous structure.

References

1.
Xu
,
X.
,
Shi
,
W.
,
Li
,
P.
,
Ye
,
S.
,
Ye
,
C.
,
Ye
,
H.
,
Lu
,
T.
, et al
,
2017
, “
Facile Fabrication of Three-Dimensional Graphene and Metal–Organic Framework Composites and Their Derivatives for Flexible All-Solid-State Supercapacitors
,”
Chem. Mater.
,
29
(
14
), pp.
6058
6065
.
2.
Shao
,
Y.
,
El-Kady
,
M. F.
,
Sun
,
J.
,
Li
,
Y.
,
Zhang
,
Q.
,
Zhu
,
M.
,
Wang
,
H.
,
Dunn
,
B.
, and
Kaner
,
R. B.
,
2018
, “
Design and Mechanisms of Asymmetric Supercapacitors
,”
Chem. Rev.
,
118
(
18
), pp.
9233
9280
.
3.
Huang
,
C.
,
Zhang
,
J.
,
Young
,
N. P.
,
Snaith
,
H. J.
, and
Grant
,
P. S.
,
2016
, “
Solid-State Supercapacitors With Rationally Designed Heterogeneous Electrodes Fabricated by Large Area Spray Processing for Wearable Energy Storage Applications
,”
Sci. Rep.
,
6
, p.
25684
.
4.
Ma
,
W.
,
Chen
,
S.
,
Yang
,
S.
,
Chen
,
W.
,
Cheng
,
Y.
,
Guo
,
Y.
,
Peng
,
S.
,
Ramakrishna
,
S.
, and
Zhu
,
M.
,
2016
, “
Hierarchical MnO2 Nanowire/Graphene Hybrid Fibers With Excellent Electrochemical Performance for Flexible Solid-State Supercapacitors
,”
J. Power Sources
,
306
, pp.
481
488
.
5.
Sun
,
H.
,
Zhang
,
Y.
,
Zhang
,
J.
,
Sun
,
X.
, and
Peng
,
H.
,
2017
, “
Energy Harvesting and Storage in 1D Devices
,”
Nat. Rev. Mater.
,
2
(
6
), p.
17023
.
6.
Zhao
,
W.
,
Jiang
,
M.
,
Wang
,
W.
,
Liu
,
S.
,
Huang
,
W.
, and
Zhao
,
Q.
,
2020
, “
Flexible Transparent Supercapacitors: Materials and Devices
,”
Adv. Funct. Mater.
,
31
(
11
), p.
2009136
.
7.
Dubal
,
D. P.
,
Chodankar
,
N. R.
,
Kim
,
D. H.
, and
Gomez-Romero
,
P.
,
2018
, “
Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics
,”
Chem. Soc. Rev.
,
47
(
6
), pp.
2065
2129
.
8.
Cherusseri
,
J.
,
Pandey
,
D.
,
Kumar
,
K. S.
,
Thomas
,
J.
, and
Zhai
,
L.
,
2020
, “
Flexible Supercapacitor Electrodes Using Metal-Organic Frameworks
,”
Nanoscale
,
12
(
34
), pp.
17649
17662
.
9.
Ma
,
J.
,
Li
,
J.
,
Guo
,
R.
,
Xu
,
H.
,
Shi
,
F.
,
Dang
,
L.
,
Liu
,
Z.
,
Sun
,
J.
, and
Lei
,
Z.
,
2019
, “
Direct Growth of Flake-Like Metal-Organic Framework on Textile Carbon Cloth as High-Performance Supercapacitor Electrode
,”
J. Power Sources
,
428
, pp.
124
130
.
10.
Sahu
,
V.
,
Shekhar
,
S.
,
Sharma
,
R. K.
, and
Singh
,
G.
,
2015
, “
Ultrahigh Performance Supercapacitor From Lacey Reduced Graphene Oxide Nanoribbons
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3110
3116
.
11.
Srither
,
S. R.
,
Karthik
,
A.
,
Arunmetha
,
S.
,
Murugesan
,
D.
, and
Rajendran
,
V.
,
2016
, “
Electrochemical Supercapacitor Studies of Porous MnO2 Nanoparticles in Neutral Electrolytes
,”
Mater. Chem. Phys.
,
183
, pp.
375
382
.
12.
Guo
,
M.
,
Zhou
,
Y.
,
Sun
,
H.
,
Zhang
,
G.
, and
Wang
,
Y.
,
2019
, “
Interconnected Polypyrrole Nanostructure for High-Performance All-Solid-State Flexible Supercapacitor
,”
Electrochim. Acta
,
298
, pp.
918
923
.
13.
Snook
,
G. A.
,
Kao
,
P.
, and
Best
,
A. S.
,
2011
, “
Conducting-Polymer-Based Supercapacitor Devices and Electrodes
,”
J. Power Sources
,
196
(
1
), pp.
1
12
.
14.
Cheng
,
C.
,
Xu
,
J.
,
Gao
,
W.
,
Jiang
,
S.
, and
Guo
,
R.
,
2019
, “
Preparation of Flexible Supercapacitor With RGO/Ni-MOF Film on Ni-Coated Polyester Fabric
,”
Electrochim. Acta
,
318
, pp.
23
31
.
15.
Wang
,
L.
,
Han
,
Y.
,
Feng
,
X.
,
Zhou
,
J.
,
Qi
,
P.
, and
Wang
,
B.
,
2016
, “
Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors
,”
Coord. Chem. Rev.
,
307
, pp.
361
381
.
16.
Zhao
,
Y.
,
Song
,
Z.
,
Li
,
X.
,
Sun
,
Q.
,
Cheng
,
N.
,
Lawes
,
S.
, and
Sun
,
X.
,
2016
, “
Metal Organic Frameworks for Energy Storage and Conversion
,”
Energy Storage Mater.
,
2
, pp.
35
62
.
17.
Liu
,
X.
,
Valentine
,
H. L.
,
Pan
,
W.-P.
,
Cao
,
Y.
, and
Yan
,
B.
,
2016
, “
2D Metal–Organic Frameworks: Syntheses, Structures, and Electrochemical Properties
,”
Inorg. Chim. Acta
,
447
, pp.
162
167
.
18.
Furukawa
,
H.
,
Cordova
,
K. E.
,
O’Keeffe
,
M.
, and
Yaghi
,
O. M.
,
2013
, “
The Chemistry and Applications of Metal-Organic Frameworks
,”
Science
,
341
(
6149
), p.
974
.
19.
Lee
,
D. Y.
,
Yoon
,
S. J.
,
Shrestha
,
N. K.
,
Lee
,
S.-H.
,
Ahn
,
H.
, and
Han
,
S.-H.
,
2012
, “
Unusual Energy Storage and Charge Retention in Co-Based Metal–Organic-Frameworks
,”
Microporous Mesoporous Mater.
,
153
, pp.
163
165
.
20.
Zhang
,
D.
,
Shi
,
H.
,
Zhang
,
R.
,
Zhang
,
Z.
,
Wang
,
N.
,
Li
,
J.
,
Yuan
,
B.
,
Bai
,
H.
, and
Zhang
,
J.
,
2015
, “
Quick Synthesis of Zeolitic Imidazolate Framework Microflowers With Enhanced Supercapacitor and Electrocatalytic Performances
,”
RSC Adv.
,
5
(
72
), pp.
58772
58776
.
21.
Yang
,
J.
,
Xiong
,
P.
,
Zheng
,
C.
,
Qiu
,
H.
, and
Wei
,
M.
,
2014
, “
Metal–Organic Frameworks: A New Promising Class of Materials for a High Performance Supercapacitor Electrode
,”
J. Mater. Chem. A
,
2
(
39
), pp.
16640
16644
.
22.
Tan
,
Y.
,
Zhang
,
W.
,
Gao
,
Y.
,
Wu
,
J.
, and
Tang
,
B.
,
2015
, “
Facile Synthesis and Supercapacitive Properties of Zr-Metal Organic Frameworks (UiO-66)
,”
RSC Adv.
,
5
(
23
), pp.
17601
17605
.
23.
Xu
,
J.
,
Yang
,
Y.
,
Wang
,
Y.
,
Cao
,
J.
, and
Chen
,
Z.
,
2019
, “
Enhanced Electrochemical Properties of Manganese-Based Metal Organic Framework Materials for Supercapacitors
,”
J. Appl. Electrochem.
,
49
(
11
), pp.
1091
1102
.
24.
Wang
,
L.
,
Feng
,
X.
,
Ren
,
L.
,
Piao
,
Q.
,
Zhong
,
J.
,
Wang
,
Y.
,
Li
,
H.
,
Chen
,
Y.
, and
Wang
,
B.
,
2015
, “
Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI
,”
J. Am. Chem. Soc.
,
137
(
15
), pp.
4920
4923
.
25.
Li
,
W.
,
Ding
,
K.
,
Tian
,
H.
,
Yao
,
M.
,
Nath
,
B.
,
Deng
,
W.
,
Wang
,
Y.
, and
Xu
,
G.
,
2017
, “
Conductive Metal-Organic Framework Nanowire Array Electrodes for High-Performance Solid-State Supercapacitors
,”
Adv. Funct. Mater.
,
27
(
27
), p.
1702067
.
26.
Linnemann
,
J.
,
Taudien
,
L.
,
Klose
,
M.
, and
Giebeler
,
L.
,
2017
, “
Electrodeposited Films to MOF-Derived Electrochemical Energy Storage Electrodes: A Concept of Simplified Additive-Free Electrode Processing for Self-Standing, Ready-to-Use Materials
,”
J. Mater. Chem. A.
,
5
(
35
), pp.
18420
18428
.
27.
Zheng
,
Z.
,
Zhao
,
X.
,
Gong
,
L.
,
Wang
,
C.
,
Wang
,
C.
,
Yu
,
K.
, and
Zhou
,
B.
,
2020
, “
Coral-Like {SiW10Mn2}-Based Mn-MOFs: Facile Fabrication With High Electrochemical Capacitor Performance
,”
J. Solid State Chem.
,
288
, p.
121409
.
28.
Zhang
,
Y.
,
Lin
,
B.
,
Sun
,
Y.
,
Zhang
,
X.
,
Yang
,
H.
, and
Wang
,
J.
,
2015
, “
Carbon Nanotubes@Metal–Organic Frameworks as Mn-Based Symmetrical Supercapacitor Electrodes for Enhanced Charge Storage
,”
RSC Adv.
,
5
(
72
), pp.
58100
58106
.
29.
Kazemi
,
S. H.
,
Hosseinzadeh
,
B.
,
Kazemi
,
H.
,
Kiani
,
M. A.
, and
Hajati
,
S.
,
2018
, “
Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors With Excellent Areal Capacitance and Operational Stability
,”
ACS Appl. Mater. Interfaces
,
10
(
27
), pp.
23063
23073
.
30.
Yang
,
W.
,
Shi
,
X.
,
Li
,
Y.
, and
Pang
,
H.
,
2019
, “
Manganese-Doped Cobalt Zeolitic Imidazolate Framework With Highly Enhanced Performance for Supercapacitor
,”
J. Energy Storage
,
26
, p.
101018
.
31.
Pang
,
H.
,
Li
,
X.
,
Li
,
B.
,
Zhang
,
Y.
,
Zhao
,
Q.
,
Lai
,
W.
, and
Huang
,
W.
,
2016
, “
Porous Dimanganese Trioxide Microflowers Derived From Microcoordinations for Flexible Solid-State Asymmetric Supercapacitors
,”
Nanoscale
,
8
(
22
), pp.
11689
11697
.
32.
Wang
,
B. R.
,
Hu
,
Y.
,
Pan
,
Z.
, and
Wang
,
J.
,
2020
, “
MOF-Derived Manganese Oxide/Carbon Nanocomposites With Raised Capacitance for Stable Asymmetric Supercapacitor
,”
RSC Adv.
,
10
(
57
), pp.
34403
34412
.
33.
Reinsch
,
H.
, and
Stock
,
N.
,
2013
, “
Formation and Characterisation of Mn-MIL-100
,”
CrystEngComm
,
15
(
3
), pp.
544
550
.
34.
Zhang
,
B.
,
Hao
,
S.
,
Xiao
,
D.
,
Wu
,
J.
, and
Huang
,
Y.
,
2016
, “
Templated Formation of Porous Mn2 O3 Octahedra From Mn-MIL-100 for Lithium-ion Battery Anode Materials
,”
Mater. Des.
,
98
, pp.
319
323
.
35.
Li
,
T.
,
Yu
,
H.
,
Zhi
,
L.
,
Zhang
,
W.
,
Dang
,
L.
,
Liu
,
Z.
, and
Lei
,
Z.
,
2017
, “
Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors
,”
J. Phys. Chem. C
,
121
(
35
), pp.
18982
18991
.
36.
Zhang
,
W.
,
Shi
,
Y.
,
Li
,
C.
,
Zhao
,
Q.
, and
Li
,
X.
,
2016
, “
Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NOx With NH3
,”
Catal. Lett.
,
146
(
10
), pp.
1956
1964
.
37.
Wang
,
P.
,
Zhao
,
H.
,
Sun
,
H.
,
Yu
,
H.
,
Chen
,
S.
, and
Quan
,
X.
,
2014
, “
Porous Metal–Organic Framework MIL-100(Fe) as an Efficient Catalyst for the Selective Catalytic Reduction of NOx With NH3
,”
RSC Adv.
,
4
(
90
), pp.
48912
48919
.
38.
Huang
,
H.
,
Chen
,
C.
,
Yang
,
R.
,
Yu
,
Y.
,
Albilali
,
R.
, and
He
,
C.
,
2020
, “
Remarkable Promotion Effect of Lauric Acid on Mn-MIL-100 for Non-Thermal Plasma-Catalytic Decomposition of Toluene
,”
Appl. Surf. Sci.
,
503
, p.
144290
.
39.
Stranick
,
M. A.
,
1999
, “
Mn(C2H3O2)2 by XPS
,”
Surf. Sci. Spectra
,
6
(1), pp.
47
54
.
40.
Wang
,
Y.
,
Li
,
B.
,
Zhang
,
B.
,
Tian
,
S.
,
Yang
,
X.
,
Ye
,
H.
,
Xia
,
Z.
, and
Zheng
,
G.
,
2020
, “
Application of MOFs-Derived Mixed Metal Oxides in Energy Storage
,”
J. Electroanal. Chem.
,
878
, p.
114576
.
41.
Bose
,
S.
,
Mandal
,
S.
,
Barua
,
A. K.
, and
Mukhopadhyay
,
S.
,
2020
, “
Properties of Boron Doped ZnO Films Prepared by Reactive Sputtering Method: Application to Amorphous Silicon Thin Film Solar Cells
,”
J. Mater. Sci. Technol.
,
55
, pp.
136
143
.
42.
Shinde
,
P. A.
,
Seo
,
Y.
,
Lee
,
S.
,
Kim
,
H.
,
Pham
,
Q. N.
,
Won
,
Y.
, and
Jun
,
S.
,
2020
, “
Layered Manganese Metal-Organic Framework With High Specific and Areal Capacitance for Hybrid Supercapacitors
,”
Chem. Eng. J.
,
387
, p.
122982
.
43.
Wang
,
X.
,
Liu
,
X.
,
Rong
,
H.
,
Song
,
Y.
,
Wen
,
H.
, and
Liu
,
Q.
,
2017
, “
Layered Manganese-Based Metal–Organic Framework as a High Capacity Electrode Material for Supercapacitors
,”
RSC Adv.
,
7
(
47
), pp.
29611
29617
.
44.
Xue
,
Q.
,
Tian
,
Y.
,
Deng
,
S.
,
Huang
,
Y.
,
Zhu
,
M.
,
Pei
,
Z.
,
Li
,
H.
,
Liu
,
F.
, and
Zhi
,
C.
,
2018
, “
LaB6 Nanowires for Supercapacitors
,”
Mater. Today Energy
,
10
, pp.
28
33
.
45.
Zhou
,
J.
,
Yu
,
J.
,
Shi
,
L.
,
Wang
,
Z.
,
Liu
,
H.
,
Yang
,
B.
,
Li
,
C.
,
Zhu
,
C.
, and
Xu
,
J.
,
2018
, “
A Conductive and Highly Deformable All-Pseudocapacitive Composite Paper as Supercapacitor Electrode With Improved Areal and Volumetric Capacitance
,”
Small
,
14
(
51
), p.
1803786
.
46.
Liu
,
Y.
,
Xu
,
N.
,
Chen
,
W.
,
Wang
,
X.
,
Sun
,
C.
, and
Su
,
Z.
,
2018
, “
Supercapacitor With High Cycling Stability Through Electrochemical Deposition of Metal-Organic Frameworks/Polypyrrole Positive Electrode
,”
Dalton Trans.
,
47
(
38
), pp.
13472
13478
.
47.
Volkov
,
A. V.
,
Sun
,
H.
,
Kroon
,
R.
,
Ruoko
,
T. P.
,
Che
,
C.
,
Edberg
,
J.
,
Müller
,
C.
,
Fabiano
,
S.
, and
Crispin
,
X.
,
2019
, “
Asymmetric Aqueous Supercapacitor Based on p-and n-Type Conducting Polymers
,”
ACS Appl. Energy Mater.
,
2
(
8
), pp.
5350
5355
.
48.
Hong
,
X.
,
Lu
,
Y.
,
Li
,
S.
,
Wang
,
R.
, and
Liu
,
Y.
,
2018
, “
Extremely Low Fractions of Graphene Oxide in Carbon Foam Prepared by a Spin-Coating Method as Freestanding Supercapacitor Electrodes
,”
J. Mater. Sci.
,
53
(
24
), pp.
16476
16483
.
49.
Aswathy
,
N. R.
,
Kumar
,
S. A.
,
Mohanty
,
S.
,
Nayak
,
S. K.
, and
Palai
,
A. K.
,
2021
, “
Polyaniline/Multi-Walled Carbon Nanotubes Filled Biopolymer Based Flexible Substrate Electrodes for Supercapacitor Applications
,”
J. Energy Storage
,
35
, p.
102256
.
You do not currently have access to this content.