Abstract

Accurately and reliably predicting the remaining useful life (RUL) of lithium battery is very important for the lithium battery health management system. However, most of the existing methods rely on complex multidimensional input features, which require a large number of sensors, increase the application cost and introduce redundant measurement errors. Therefore, this paper, only based on the battery capacity curve itself, proposes a method to construct a prediction model of support vector regression (SVR) by fusing multiple kernel functions. The linear equation coefficients of multiple kernel function combinations are optimized by the hybrid optimization algorithm. It is found that the hybrid kernel function can effectively overcome the problem that the single-kernel function is not capable of mapping the capacity fading trend of lithium battery. Hybrid optimization algorithm can avoid the problems of local optimization and global search ability deficiency. The proposed method is validated by experiments using the battery attenuation datasets from NASA, the University of Maryland, and a high-rate lithium battery in the laboratory stage. It can be seen from the experimental results that the prediction accuracy of this method is high. The mean prediction error, mean RMSE, and mean MAE are 2%, 0.0198, and 0.0157.

References

1.
Deng
,
Y.
,
Ying
,
H.
,
Jiaqiang
,
E.
,
Zhu
,
H.
,
Wei
,
K.
,
Chen
,
J.
,
Zhang
,
F.
, and
Liao
,
G.
,
2019
, “
Feature Parameter Extraction and Intelligent Estimation of the State-of-Health of Lithium-Ion Batteries
,”
Energy
,
176
, pp.
91
102
.
2.
Zhu
,
Q.
,
Xu
,
M.
,
Liu
,
W.
, and
Zheng
,
M.
,
2019
, “
A State of Charge Estimation Method for Lithium-Ion Batteries Based on Fractional Order Adaptive Extended Kalman Filter
,”
Energy
,
187
, p.
115880
.
3.
Nagode
,
M.
,
Gosar
,
A.
,
Sweeney
,
C. A.
,
Jaguemont
,
J.
,
Van Mierlo
,
J.
, and
Šeruga
,
D.
,
2019
, “
Mechanistic Modelling of Cyclic Voltage-Capacity Response for Lithium-Ion Batteries
,”
Energy
,
186
, p.
115791
.
4.
Qiu
,
X.
,
Wu
,
W.
, and
Wang
,
S.
,
2020
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Improved Cuckoo Search Particle Filter and a Novel State of Charge Estimation Method
,”
J. Power Sources
,
450
, p.
227700
.
5.
Duong
,
P. L. T.
, and
Raghavan
,
N.
,
2018
, “
Heuristic Kalman Optimized Particle Filter for Remaining Useful Life Prediction of Lithium-Ion Battery
,”
Microelectron. Reliab.
,
81
, pp.
232
243
.
6.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
7.
Lyu
,
C.
,
Lai
,
Q.
,
Ge
,
T.
,
Yu
,
H.
,
Wang
,
L.
, and
Ma
,
N.
,
2017
, “
A Lead-Acid Battery’s Remaining Useful Life Prediction by Using Electrochemical Model in the Particle Filtering Framework
,”
Energy
,
120
, pp.
975
984
.
8.
Dong
,
G.
,
Chen
,
Z.
,
Wei
,
J.
, and
Ling
,
Q.
,
2018
, “
Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering
,”
IEEE Trans. Ind. Electron.
,
65
(
11
), pp.
8646
8655
.
9.
Xiong
,
R.
,
Sun
,
F.
,
He
,
H.
, and
Nguyen
,
T. D.
,
2013
, “
A Data-Driven Adaptive State of Charge and Power Capability Joint Estimator of Lithium-Ion Polymer Battery Used in Electric Vehicles
,”
Energy
,
63
, pp.
295
308
.
10.
Nuhic
,
A.
,
Terzimehic
,
T.
,
Soczka-Guth
,
T.
,
Buchholz
,
M.
, and
Dietmayer
,
K.
,
2013
, “
Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods
,”
J. Power Sources
,
239
, pp.
680
688
.
11.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
12.
Qu
,
J.
,
Liu
,
F.
,
Ma
,
Y.
, and
Fan
,
J.
,
2019
, “
A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery
,”
IEEE Access
,
7
, pp.
87178
87191
.
13.
Wu
,
J.
,
Zhang
,
C.
, and
Chen
,
Z.
,
2016
, “
An Online Method for Lithium-Ion Battery Remaining Useful Life Estimation Using Importance Sampling and Neural Networks
,”
Appl. Energy
,
173
, pp.
134
140
.
14.
Ma
,
G.
,
Zhang
,
Y.
,
Cheng
,
C.
,
Zhou
,
B.
, and
Yuan
,
Y.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on False Nearest Neighbors and a Hybrid Neural Network
,”
Appl. Energy
,
253
, p. 113626.
15.
Li
,
H.
,
Pan
,
D.
, and
Chen
,
C. L. P.
,
2014
, “
Intelligent Prognostics for Battery Health Monitoring Using the Mean Entropy and Relevance Vector Machine
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
44
(
7
), pp.
851
862
.
16.
Wang
,
Y.
,
Ni
,
Y.
,
Li
,
N.
,
Lu
,
S.
,
Zhang
,
S.
,
Feng
,
Z.
, and
Wang
,
J.
,
2019
, “
A Method Based on Improved Ant Lion Optimization and Support Vector Regression for Remaining Useful Life Estimation of Lithium-Ion Batteries
,”
Energy Sci. Eng.
,
7
(
6
), pp.
2797
2813
.
17.
Gao
,
D.
, and
Huang
,
M.
,
2017
, “
Prediction of Remaining Useful Life of Lithium-Ion Battery Based on Multi-Kernel Support Vector Machine With Particle Swarm Optimization
,”
J. Power Electron.
,
17
(
5
), pp.
1288
1297
.
18.
Xu
,
Z.
,
Zhuang
,
L.
,
Tian
,
S.
,
He
,
M.
, and
Ma
,
L.
,
2020
, “
Energy-Driven Virtual Network Embedding Algorithm Based on Enhanced Bacterial Foraging Optimization
,”
IEEE Access
,
99
, pp.
1
1
.
19.
Sm
,
A.
,
Smm
,
B.
, and
Al
,
A.
,
2014
, “
Grey Wolf Optimizer
,”
Adv. Eng. Softw.
,
69
, pp.
46
61
.
20.
Yang
,
X.
,
Chen
,
Y.
,
Li
,
B.
, and
Luo
,
D.
,
2020
, “
Battery States Online Estimation Based on Exponential Decay Particle Swarm Optimization and Proportional-Integral Observer With a Hybrid Battery Model
,”
Energy
,
191
, p.
116509
.
21.
Barraza
,
J.
,
Melin
,
P.
,
Valdez
,
F.
, and
Gonzalez
,
C.
,
2017
, “Fireworks Algorithm (FWA) With Adaptation of Parameters Using Fuzzy Logic,”
Nature-Inspired Design of Hybrid Intelligent Systems
,
P.
Melin
,
O.
Castillo
, and
J.
Kacprzyk
, eds.,
Springer
,
Cham, Switzerland
.
22.
Feoktistov
,
V.
,
2006
,
Differential Evolution
,
Springer
,
New York
23.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support Vector Networks
,”
Mach. Lear.
,
20
(
3
), pp.
273
297
.
24.
Kumar
,
S.
, and
Singh
,
M.
,
2020
, “
Breast Cancer Detection Based on Feature Selection Using Enhanced Grey Wolf Optimizer and Support Vector Machine Algorithms
,”
Vietnam J. Comput. Sci.
,
8
(
2
), pp.
1
21
.
25.
Rashid
,
T. A.
,
Abbas
,
D. K.
,
Turel
,
Y. K.
, and
Lenin Fred
,
A.
,
2019
, “
A Multi Hidden Recurrent Neural Network With a Modified Grey Wolf Optimizer
,”
PLoS One
,
14
(
3
), p.
e0213237
.
26.
Opara
,
K. R.
, and
Arabas
,
J.
,
2018
, “
Differential Evolution: A Survey of Theoretical Analyses
,”
Swarm Evol. Comput.
,
44
, pp.
546
558
.
27.
Kai
,
G.
,
Saha
,
B.
,
Saxena
,
A.
,
Celaya
,
J. R.
, and
Christophersen
,
J. P.
,
2008
, “
Prognostics in Battery Health Management
,”
IEEE Instrum. Meas. Mag.
,
11
(
4
), pp.
33
40
.
28.
Wei
,
H.
,
Williard
,
N.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Prognostics of Lithium-Ion Batteries Based on Dempster–Shafer Theory and the Bayesian Monte Carlo Method
,”
J. Power Sources
,
196
(
23
), pp.
10314
10321
.
29.
Wang
,
S.
,
Zhao
,
L.
,
Su
,
X.
, and
Ma
,
P.
,
2014
, “
Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression
,”
Energies
,
7
(
10
), pp.
6492
6508
.
30.
Liu
,
Z.
,
Sun
,
G.
,
Bu
,
S.
,
Han
,
J.
, and
Pecht
,
M.
,
2016
, “
Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries
,”
IEEE Trans. Instrum. Meas.
,
99
(
2
), pp.
1
14
.
You do not currently have access to this content.