Abstract

This review article addresses microbial fuel cells (MFCs) as a renewable energy source. Microbial fuel cells are bio-electrochemical systems that use exoelectrogenic bacterial communities under anaerobic conditions to convert chemical energy into electrical energy. These systems are attracting attention due to their potential to reduce overall energy consumption, produce zero carbon emissions, and exhibit high energy density. The rapid development of renewable energy sources has increased the potential for bioenergy, particularly MFCs, to become one of the most important energy sources of the future. In addition to energy production, MFCs show potential for bioremediation and efficient removal of various pollutants. While MFC technology currently has limited application at the laboratory level, it is expected to increase in commercial use in the near future and offers great potential in the areas of renewable energy and environmental sustainability. This review article focuses on the historical and ecological development of the components used in MFCs, examining in detail their evolution and use in MFCs for renewable energy production.

References

1.
Du
,
Z.
,
Li
,
H.
, and
Gu
,
T.
,
2007
, “
A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy
,”
Biotechnol. Adv.
,
25
(
5
), pp.
464
482
.
2.
Zhou
,
M.
,
Yang
,
J.
,
Wang
,
H.
,
Jin
,
T.
,
Hassett
,
D. J.
, and
Gu
,
T.
,
2014
,
Bioelectrochemistry of Microbial Fuel Cells and Their Potential Applications in Bioenergy
,
Elsevier
,
New York
.
3.
Gandía
,
L. M.
,
Arzamendi
,
G.
, and
Diéguez
,
P. M.
,
2013
, “
Chapter 1: Renewable Hydrogen Energy: An Overview
,”
Renewable Hydrog. Technol.
, pp.
1
17
.
4.
Alves
,
H. J.
,
Bley Junior
,
C.
,
Niklevicz
,
R. R.
,
Frigo
,
E. P.
,
Frigo
,
M. S.
, and
Coimbra-Araújo
,
C. H.
,
2013
, “
Overview of Hydrogen Production Technologies From Biogas and the Applications in Fuel Cells
,”
Int. J. Hydrog. Energy
,
38
(
13
), pp.
5215
5225
.
5.
Logan
,
B. E.
,
2009
, “
Exoelectrogenic Bacteria That Power Microbial Fuel Cells
,”
Nat. Rev. Microbiol.
,
7
(
5
), pp.
375
381
.
6.
Santoro
,
C.
,
Arbizzani
,
C.
,
Erable
,
B.
, and
Ieropoulos
,
I.
,
2017
, “
Microbial Fuel Cells: From Fundamentals to Applications: A Review
,”
J. Power Sources
,
356
(
6
), pp.
225
244
.
7.
Liu
,
H.
,
Cheng
,
S.
, and
Logan
,
B. E.
,
2005
, “
Production of Electricity From Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell
,”
Environ. Sci. Technol.
,
39
(
2
), pp.
658
662
.
8.
Potter
,
M. C.
,
1911
, “
Electrical Effects Accompanying the Decomposition of Organic Compounds
,”
Proc. R. Soc. Lond. Ser., B: Contain. Pap. Biol. Charact.
,
84
(
571
), pp.
260
276
.
9.
Rabaey
,
K.
, and
Rozendal
,
R. A.
,
2010
, “
Microbial Electrosynthesis—Revisiting the Electrical Route for Microbial Production
,”
Nat. Rev. Microbiol.
,
8
(
10
), pp.
706
716
.
10.
Liu
,
H.
,
Grot
,
S.
, and
Logan
,
B. E.
,
2005
, “
Electrochemically Assisted Microbial Production of Hydrogen From Acetate
,”
Environ. Sci. Technol.
,
39
(
11
), pp.
4317
4320
.
11.
Liu
,
Hong
,
Ramnarayanan
,
Ramanathan
, and
Logan
,
Bruce E.
,
2004
, “
Production of Electricity From Artificial Wastewater Using a Single Chamber Microbial Fuel Cell
,”
Environ. Sci. Technol.
,
38
, pp.
2281
2285
.
12.
Hoogers
,
G.
,
2002
,
Fuel Cell Technology Handbook
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
1
345
.
13.
Rostrup-Nielsen
,
J. R.
, and
Rostrup-Nielsen
,
T.
,
2002
, “
Large-Scale Hydrogen Production
,”
CATTECH
,
6
(
4
), pp.
150
159
.
14.
Dharmalingam
,
S.
,
Kugarajah
,
V.
, and
Sugumar
,
M.
,
2019
, “
Chapter 1.7: Membranes for Microbial Fuel Cells
,”
Microb. Electrochem. Technol.
, pp.
143
194
.
15.
Hasan
,
K.
,
Milton
,
R. D.
,
Grattieri
,
M.
,
Wang
,
T.
,
Stephanz
,
M.
, and
Minteer
,
S. D.
,
2017
, “
Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion
,”
ACS Catal.
,
7
(
4
), pp.
2257
2265
.
16.
Abdelkareem
,
M. A.
,
Elsaid
,
K.
,
Wilberforce
,
T.
,
Kamil
,
M.
,
Sayed
,
E. T.
, and
Olabi
,
A.
,
2021
, “
Environmental Aspects of Fuel Cells: A Review
,”
Sci. Total Environ.
,
752
, p.
141803
.
17.
Stambouli
,
A. B.
,
2011
, “
Fuel Cells: The Expectations for an Environmental-Friendly and Sustainable Source of Energy
,”
Renewable Sustain. Energy Rev.
,
15
(
9
), pp.
4507
4520
.
18.
Allison
,
N. R.
,
2005
, “
A Microbial Fuel Cell Using Biomineralized Manganese Oxides as a Cathodic Reactant
,” M.Sc. thesis,
Montana State University
,
Bozeman, MT
.
19.
Young
,
T. G.
,
Hadjipetrou
,
L.
, and
Lilly
,
M. D.
,
1966
, “
The Theoretical Aspects of Biochemical Fuel Cells
,”
Biotechnol. Bioeng.
,
8
(
4
), pp.
581
593
.
20.
Kim
,
B. H.
,
Kim
,
H. J.
,
Hyun
,
M. S.
, and
Park
,
D. H.
,
1999
, “
Direct Electrode Reaction of Fe(III)-Reducing Bacterium, Shewanella Putrefaciens
,”
J. Microbiol. Biotechnol.
,
9
(
2
), pp.
127
131
.
21.
Bennetto
,
H. P.
,
1990
, “
Electricity Generation by Microorganisms
,”
Huanjing Kexue/Environ. Sci.
,
1
(
4
), pp.
163
168
.
22.
Allen
,
R. M.
, and
Bennetto
,
H. P.
,
1993
, “
Microbial Fuel-Cells—Electricity Production From Carbohydrates
,”
Appl. Biochem. Biotechnol.
,
39–40
(
1
), pp.
27
40
.
23.
He
,
Z.
, and
Angenent
,
L. T.
,
2006
, “
Application of Bacterial Biocathodes in Microbial Fuel Cells
,”
Electroanalysis
,
18
(
19–20
), pp.
2009
2015
.
24.
Logan
,
B. E.
,
2008
,
Microbial Fuel Cells
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1
213
.
25.
Kim
,
B. H.
,
Chang
,
I. S.
, and
Gadd
,
G. M.
,
2007
, “
Challenges in Microbial Fuel Cell Development and Operation
,”
Appl. Microbiol. Biotechnol.
,
76
(
3
), pp.
485
494
.
26.
Garche
,
B.
,
Dyer
,
J.
,
Moseley
,
C. K.
,
Ogumi
,
P. T.
,
Rand
,
Z.
, and
Scrosati
,
D. A.
,
2013
,
Encyclopedia of Electrochemical Power Sources
,
Elsevier
,
Radarweg-Amsterdam, The Netherlands
, pp.
1
284
.
27.
Cao
,
Y.
,
Mu
,
H.
,
Liu
,
W.
,
Zhang
,
R.
,
Guo
,
J.
,
Xian
,
M.
, and
Liu
,
H.
,
2019
, “
Electricigens in the Anode of Microbial Fuel Cells: Pure Cultures Versus Mixed Communities
,”
Microb. Cell Fact.
,
18
(
1
), pp.
1
14
.
28.
Chen
,
S.
,
Patil
,
S. A.
,
Brown
,
R. K.
, and
Schröder
,
U.
,
2019
, “
Strategies for Optimizing the Power Output of Microbial Fuel Cells: Transitioning From Fundamental Studies to Practical Implementation
,”
Appl. Energy
,
233–234
, pp.
15
28
.
29.
He
,
L.
,
Du
,
P.
,
Chen
,
Y.
,
Lu
,
H.
,
Cheng
,
X.
,
Chang
,
B.
, and
Wang
,
Z.
,
2017
, “
Advances in Microbial Fuel Cells for Wastewater Treatment
,”
Renewable Sustain. Energy Rev.
,
71
, pp.
388
403
.
30.
Evelyn, Li
,
Y.
,
Marshall
,
A.
, and
Gostomski
,
P. A.
,
2014
, “
Gaseous Pollutant Treatment and Electricity Generation in Microbial Fuel Cells (MFCs) Utilising Redox Mediators
,”
Rev. Environ. Sci. Biotechnol.
,
13
(
1
), pp.
35
51
.
31.
Pankratova
,
G.
,
Hederstedt
,
L.
, and
Gorton
,
L.
,
2019
, “
Extracellular Electron Transfer Features of Gram-Positive Bacteria
,”
Anal. Chim. Acta
,
1076
, pp.
32
47
.
32.
Patil
,
S. A.
,
Hägerhäll
,
C.
, and
Gorton
,
L.
,
2012
, “
Electron Transfer Mechanisms Between Microorganisms and Electrodes in Bioelectrochemical Systems
,”
Bioanal. Rev.
,
4
(
2–4
), pp.
159
192
.
33.
Pandit
,
S.
,
Khilari
,
S.
,
Roy
,
S.
,
Pradhan
,
D.
, and
Das
,
D.
,
2014
, “
Improvement of Power Generation Using Shewanella Putrefaciens Mediated Bioanode in a Single Chambered Microbial Fuel Cell: Effect of Different Anodic Operating Conditions
,”
Bioresour. Technol.
,
166
, pp.
451
457
.
34.
Ndayisenga
,
F.
,
Yu
,
Z.
,
Yu
,
Y.
,
Lay
,
C.-H.
, and
Zhou
,
D.
,
2018
, “
Bioelectricity Generation Using Microalgal Biomass as Electron Donor in a Bio-Anode Microbial Fuel Cell
,”
Bioresour. Technol.
,
270
, pp.
286
293
.
35.
Christwardana
,
M.
,
Hadiyanto
,
H.
,
Motto
,
S. A.
,
Sudarno
,
S.
, and
Haryani
,
K.
,
2020
, “
Performance Evaluation of Yeast-Assisted Microalgal Microbial Fuel Cells on Bioremediation of Cafeteria Wastewater for Electricity Generation and Microalgae Biomass Production
,”
Biomass Bioenergy
,
139
, p.
105617
.
36.
Aiyer
,
K. S.
,
2021
, “
Synergistic Effects in a Microbial Fuel Cell Between Co-Cultures and a Photosynthetic Alga Chlorella Vulgaris Improve Performance
,”
Heliyon
,
7
(
1
), p.
e05935
.
37.
Cui
,
Y.
,
Rashid
,
N.
,
Hu
,
N.
,
Rehman
,
M. S. U.
, and
Han
,
J.-I.
,
2014
, “
Electricity Generation and Microalgae Cultivation in Microbial Fuel Cell Using Microalgae-Enriched Anode and Bio-Cathode
,”
Energy Convers. Manage.
,
79
, pp.
674
680
.
38.
Liu
,
H.
,
Cheng
,
S.
, and
Logan
,
B. E.
,
2005
, “
Power Generation in FED-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration
,”
Environ. Sci. Technol.
,
39
(
14
), pp.
5488
5493
.
39.
Logan
,
B. E.
,
Call
,
D.
,
Cheng
,
S.
,
Hamelers
,
H. V. M.
,
Sleutels
,
T. H. J. A.
,
Jeremiasse
,
A. W.
, and
Rozendal
,
R. A.
,
2008
, “
Microbial Electrolysis Cells for High Yield Hydrogen Gas Production From Organic Matter
,”
Environ. Sci. Technol.
,
42
(
23
), pp.
8630
8640
.
40.
Logan
,
B. E.
,
Murano
,
C.
,
Scott
,
K.
,
Gray
,
N. D.
, and
Head
,
I. M.
,
2005
, “
Electricity Generation From Cysteine in a Microbial Fuel Cell
,”
Water Res.
,
39
(
5
), pp.
942
952
.
41.
Lovley
,
D. R.
,
2012
, “
Electromicrobiology
,”
Annu. Rev. Microbiol.
,
66
(
1
), pp.
391
409
.
42.
Chandrasekhar
,
K.
, and
Venkata Mohan
,
S.
,
2014
, “
Bio-electrohydrolysis as a Pretreatment Strategy to Catabolize Complex Food Waste in Closed Circuitry: Function of Electron Flux to Enhance Acidogenic Biohydrogen Production
,”
Int. J. Hydrogen Energy
,
39
(
22
), pp.
11411
11422
.
43.
Mo
,
Y.
,
Liang
,
P.
,
Huang
,
X.
,
Wang
,
H.
, and
Cao
,
X.
,
2009
, “
Enhancing the Stability of Power Generation of Single-Chamber Microbial Fuel Cells Using an Anion Exchange Membrane
,”
J. Chem. Technol. Biotechnol.
,
84
(
12
), pp.
1767
1772
.
44.
Liu
,
W.
,
Liu
,
L.
,
Liao
,
J.
,
Wang
,
L.
, and
Li
,
N.
,
2017
, “
Self-Crosslinking of Comb-Shaped Polystyrene Anion Exchange Membranes for Alkaline Fuel Cell Application
,”
J. Membr. Sci.
,
536
, pp.
133
140
.
45.
Scott
,
K.
,
2014
,
Microbial Fuel Cells: Transformation of Wastes Into Clean Energy
,
Woodhead Publishing Limited
,
Newcastle, UK
, pp.
266
300
.
46.
Rabaey
,
K.
,
Boon
,
N.
,
Siciliano
,
S. D.
,
Verhaege
,
M.
, and
Verstraete
,
W.
,
2004
, “
Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer
,”
Appl. Environ. Microbiol.
,
70
(
9
), pp.
5373
5382
.
47.
Varcoe
,
J. R.
,
Atanassov
,
P.
,
Dekel
,
D. R.
,
Herring
,
A. M.
,
Hickner
,
M. A.
,
Kohl
,
P. A.
,
Kucernak
,
A. R.
, et al
,
2014
, “
Anion-Exchange Membranes in Electrochemical Energy Systems
,”
Energy Environ. Sci.
,
7
(
10
), pp.
3135
3191
.
48.
Lanas
,
V.
, and
Logan
,
B. E.
,
2013
, “
Evaluation of Multi-brush Anode Systems in Microbial Fuel Cells
,”
Bioresour. Technol.
,
148
, pp.
379
385
.
49.
Bullen
,
R. A.
,
Arnot
,
T. C.
,
Lakeman
,
J. B.
, and
Walsh
,
F. C.
,
2006
, “
Biofuel Cells and Their Development
,”
Biosens. Bioelectron.
,
21
(
11
), pp.
2015
2045
.
50.
Roller
,
S. D.
,
Bennetto
,
H. P.
,
Delaney
,
G. M.
,
Mason
,
J. R.
,
Stirling
,
J. L.
, and
Thurston
,
C. F.
,
1984
, “
Electron-Transfer Coupling in Microbial Fuel Cells: 1. Comparison of Redox-Mediator Reduction Rates and Respiratory Rates of Bacteria.
J. Chem. Technol. Biotechnol. Biotechnol.
,
34 B
(
1
), pp.
3
12
.
51.
Zhou
,
M.
,
Chi
,
M.
,
Luo
,
J.
,
He
,
H.
, and
Jin
,
T.
,
2011
, “
An Overview of Electrode Materials in Microbial Fuel Cells
,”
J. Power Sources
,
196
(
10
), pp.
4427
4435
.
52.
Zhang
,
F.
,
Saito
,
T.
,
Cheng
,
S.
,
Hickner
,
M. A.
, and
Logan
,
B. E.
,
2010
, “
Microbial Fuel Cell Cathodes With Poly(Dimethylsiloxane) Diffusion Layers Constructed Around Stainless Steel Mesh Current Collectors
,”
Environ. Sci. Technol.
,
44
(
4
), pp.
1490
1495
.
53.
Bajracharya
,
S.
,
ElMekawy
,
A.
,
Srikanth
,
S.
, and
Pant
,
D.
,
2016
,
Chapter 6: Cathodes for Microbial Fuel Cells
,
Waltham, MA
, pp.
179
213
.
54.
Wei
,
J.
,
Liang
,
P.
, and
Huang
,
X.
,
2011
, “
Recent Progress in Electrodes for Microbial Fuel Cells
,”
Bioresour. Technol.
,
102
(
20
), pp.
9335
9344
.
55.
Longtin
,
N.
,
Oliveira
,
D.
,
Mahadevan
,
A.
,
Gejji
,
V.
,
Gomes
,
C.
, and
Fernando
,
S.
,
2021
, “
Analysis of Spirulina Platensis Microalgal Fuel Cell
,”
J. Power Sources
,
486
, p.
229290
.
56.
Moon
,
H.
,
Chang
,
I. S.
, and
Kim
,
B. H.
,
2006
, “
Continuous Electricity Production From Artificial Wastewater Using a Mediator-Less Microbial Fuel Cell
,”
Bioresour. Technol.
,
97
(
4
), pp.
621
627
.
57.
Cheng
,
S.
,
Liu
,
H.
, and
Logan
,
B. E.
,
2006
, “
Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
40
(
1
), pp.
364
369
.
58.
HaoYu
,
E.
,
Cheng
,
S.
,
Scott
,
K.
, and
Logan
,
B.
,
2007
, “
Microbial Fuel Cell Performance With Non-Pt Cathode Catalysts
,”
J. Power Sources
,
171
(
2
), pp.
275
281
.
59.
Chae
,
K.-J.
,
Choi
,
M.-J.
,
Lee
,
J.-W.
,
Kim
,
K.-Y.
, and
Kim
,
I. S.
,
2009
, “
Effect of Different Substrates on the Performance, Bacterial Diversity, and Bacterial Viability in Microbial Fuel Cells
,”
Bioresour. Technol.
,
100
(
14
), pp.
3518
3525
.
60.
Chaudhuri
,
S. K.
, and
Lovley
,
D. R.
,
2003
, “
Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells
,”
Nat. Biotechnol.
,
21
(
10
), pp.
1229
1232
.
61.
Liu
,
H.
,
Ramnarayanan
,
R.
, and
Logan
,
B. E.
,
2004
, “
Production of Electricity During Wastewater Treatment Using a Single Chamber Microbial Fuel Cell
,”
Environ. Sci. Technol.
,
38
(
7
), pp.
2281
2285
.
62.
Mathuriya
,
S. A.
, and
Sharma
,
V. N.
,
2010
, “
Bioelectricity Production From Various Wastewaters Through Microbial Fuel Cell Technology
,”
J. Biochem. Technol.
,
2
(
1
), pp.
133
137
.
63.
Pandey
,
P.
,
Shinde
,
V. N.
,
Deopurkar
,
R. L.
,
Kale
,
S. P.
,
Patil
,
S. A.
, and
Pant
,
D.
,
2016
, “
Recent Advances in the Use of Different Substrates in Microbial Fuel Cells Toward Wastewater Treatment and Simultaneous Energy Recovery
,”
Appl. Energy
,
168
, pp.
706
723
.
64.
Aelterman
,
P.
,
Rabaey
,
K.
,
Clauwaert
,
P.
, and
Verstraete
,
W.
,
2006
, “
Microbial Fuel Cells for Wastewater Treatment
,”
Water Sci. Technol.
,
54
(
8
), pp.
9
15
.
65.
Cheng
,
S.
,
Liu
,
H.
, and
Logan
,
B. E.
,
2006
, “
Increased Power Generation in a Continuous Flow MFC With Advective Flow Through the Porous Anode and Reduced Electrode Spacing
,”
Environ. Sci. Technol.
,
40
(
7
), pp.
2426
2432
.
66.
Neto
,
S. A.
,
Forti
,
J. C.
, and
de Andrade
,
A. R.
,
2010
, “
An Overview of Enzymatic Biofuel Cells
,”
Electrocatalysis
,
1
(
1
), pp.
87
94
.
67.
Rabaey
,
K.
,
Lissens
,
G.
, and
Verstraete
,
W.
,
2005
, “
Microbial Fuel Cells: Performances and Perspectives
,”
Biofuels Fuel Cells Renew. Energy Biomass Ferment.
, pp.
377
399
.
68.
Logan
,
B. E.
,
Hamelers
,
B.
,
Rozendal
,
R.
,
Schröder
,
U.
,
Keller
,
J.
,
Freguia
,
S.
,
Aelterman
,
P.
,
Verstraete
,
W.
, and
Rabaey
,
K.
,
2006
, “
Microbial Fuel Cells: Methodology and Technology
,”
Environ. Sci. Technol.
,
40
(
17
), pp.
5181
5192
.
69.
Erable
,
B.
,
Duţeanua
,
N. M.
,
Ghangrekar
,
M. M.
,
Dumas
,
C.
, and
Scott
,
K.
,
2010
, “
Application of Electro-Active Biofilms
,”
Biofouling
,
26
(
1
), pp.
57
71
.
70.
Schröder
,
U.
,
2007
, “
Anodic Electron Transfer Mechanisms in Microbial Fuel Cells and Their Energy Efficiency
,”
Phys. Chem. Chem. Phys.
,
9
(
21
), pp.
2619
2629
.
71.
Osman
,
M. H.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2010
, “
Recent Progress and Continuing Challenges in Bio-Fuel Cells. Part II: Microbial
,”
Biosens. Bioelectron.
,
26
(
3
), pp.
953
963
.
72.
Yan
,
H.
,
Saito
,
T.
, and
Regan
,
J. M.
,
2012
, “
Nitrogen Removal in a Single-Chamber Microbial Fuel Cell With Nitrifying Biofilm Enriched at the Air Cathode
,”
Water Res.
,
46
(
7
), pp.
2215
2224
.
73.
Clauwaert
,
P.
,
Rabaey
,
K.
,
Aelterman
,
P.
,
De Schamphelaire
,
L.
,
Pham
,
T. H.
,
Boeckx
,
P.
,
Boon
,
N.
, and
Verstraete
,
W.
,
2007
, “
Biological Denitrification in Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
41
(
9
), pp.
3354
3360
.
74.
Oh
,
S.
,
Min
,
B.
, and
Logan
,
B. E.
,
2004
, “
Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
38
(
18
), pp.
4900
4904
.
75.
Ter Heijne
,
A.
,
Hamelers
,
H. V. M.
,
De Wilde
,
V.
,
Rozendal
,
R. A.
, and
Buisman
,
C. J. N.
,
2006
, “
A Bipolar Membrane Combined With Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
40
(
17
), pp.
5200
5205
.
76.
Thrash
,
J. C.
,
Van Trump
,
J. I.
,
Weber
,
K. A.
,
Miller
,
E.
,
Achenbach
,
L. A.
, and
Coates
,
J. D.
,
2007
, “
Electrochemical Stimulation of Microbial Perchlorate Reduction
,”
Environ. Sci. Technol.
,
41
(
5
), pp.
1740
1746
.
77.
You
,
S.
,
Zhao
,
Q.
,
Zhang
,
J.
,
Jiang
,
J.
, and
Zhao
,
S.
,
2006
, “
A Microbial Fuel Cell Using Permanganate as the Cathodic Electron Acceptor
,”
J. Power Sources
,
162
(
2
), pp.
1409
1415
.
78.
Freguia
,
S.
,
Rabaey
,
K.
,
Yuan
,
Z.
, and
Keller
,
J.
,
2007
, “
Electron and Carbon Balances in Microbial Fuel Cells Reveal Temporary Bacterial Storage Behavior During Electricity Generation
,”
Environ. Sci. Technol.
,
41
(
8
), pp.
2915
2921
.
79.
Watanabe
,
K.
,
2008
, “
Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy
,”
J. Biosci. Bioeng.
,
106
(
6
), pp.
528
536
.
80.
Oh
,
S.-E.
, and
Logan
,
B. E.
,
2006
, “
Proton Exchange Membrane and Electrode Surface Areas as Factors That Affect Power Generation in Microbial Fuel Cells
,”
Appl. Microbiol. Biotechnol.
,
70
(
2
), pp.
162
169
.
81.
Fang
,
C.
,
Min
,
B.
, and
Angelidaki
,
I.
,
2011
, “
Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes
,”
Appl. Biochem. Biotechnol.
,
164
(
4
), pp.
464
474
.
82.
Sharma
,
T.
,
Reddy
,
A. L. M.
,
Chandra
,
T. S.
, and
Ramaprabhu
,
S.
,
2008
, “
High Power Density From Pt Thin Film Electrodes Based Microbial Fuel Cell
,”
J. Nanosci. Nanotechnol.
,
8
(
8
), pp.
4132
4134
.
83.
Rinaldi
,
A.
,
Mecheri
,
B.
,
Garavaglia
,
V.
,
Licoccia
,
S.
,
Di Nardo
,
P.
, and
Traversa
,
E.
,
2008
, “
Engineering Materials and Biology to Boost Performance of Microbial Fuel Cells: A Critical Review
,”
Energy Environ. Sci.
,
1
(
4
), pp.
417
429
.
84.
Logan
,
B.
,
Cheng
,
S.
,
Watson
,
V.
, and
Estadt
,
G.
,
2007
, “
Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
41
(
9
), pp.
3341
3346
.
85.
Rabaey
,
K.
,
Lissens
,
G.
,
Siciliano
,
S. D.
, and
Verstraete
,
W.
,
2003
, “
A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency
,”
Biotechnol. Lett.
,
25
(
18
), pp.
1531
1535
.
86.
Zuo
,
Y.
,
Cheng
,
S.
, and
Logan
,
B. E.
,
2008
, “
Ion Exchange Membrane Cathodes for Scalable Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
42
(
18
), pp.
6967
6972
.
87.
Clauwaert
,
P.
,
Van Der Ha
,
D.
,
Boon
,
N.
,
Verbeken
,
K.
,
Verhaege
,
M.
,
Rabaey
,
K.
, and
Verstraete
,
W.
,
2007
, “
Open Air Biocathode Enables Effective Electricity Generation With Microbial Fuel Cells
,”
Environ. Sci. Technol.
,
41
(
21
), pp.
7564
7569
.
You do not currently have access to this content.