Abstract

Supercapattery is a recently developed energy storage device that includes the properties of a supercapacitor and a rechargeable battery. A hydrothermal method is used to synthesize the sulfide-based materials. The structural morphology, elemental composition, and electrochemical properties are measured using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and potentiostat system. The specific capacitance is enhanced up to 1964.2 F/g by making the composite with carbon nanotubes (CNTs), which is higher than the reference sample (MnS). In the case of a real device, the obtained value of specific capacity in manganese sulfide/CNTs/activated carbon is 240 C/g which is much improved compared to the previously reported values. In a supercapattery device, an excellent energy density of 53.3 Wh/Kg and a high power density of 7995 W/kg are obtained. The stability of the device is measured up to 1000 cycles and achieved the specific capacity retention of 86% with columbic efficiency of 97%. Electrochemical impedance spectroscopy (EIS) and Brunauer–Emmett–Teller (Lee et al., 2012, Self-standing Positive Electrodes of Oxidized few-Walled Carbon Nanotubes for Light-Weight and High-Power Lithium Batteries,” Energy Environ. Sci., 5(1), pp. 5437–5444) measurements confirm the improvement in surface area and electrochemical properties. Our results show that a 50/50 weight ratio of manganese sulfide and CNTs are more suitable and provide opportunities to design high-performance energy storage devices.

References

1.
Lee
,
S. W.
,
Gallant
,
B. M.
,
Lee
,
Y.
,
Yoshida
,
N.
,
Kim
,
D. Y.
,
Yamada
,
Y.
,
Noda
,
S.
,
Yamada
,
A.
, and
Shao-Horn
,
Y.
,
2012
, “
Self-Standing Positive Electrodes of Oxidized Few-Walled Carbon Nanotubes for Light-Weight and High-Power Lithium Batteries
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5437
5444
.
2.
Gogotsi
,
Y.
, and
Simon
,
P.
,
2011
, “
True Performance Metrics in Electrochemical Energy Storage
,”
Science
,
334
(
6058
), pp.
917
918
.
3.
Larcher
,
D.
, and
Tarascon
,
J. M.
,
2015
, “
Towards Greener and More Sustainable Batteries for Electrical Energy Storage
,”
Nat. Chem.
,
7
(
1
), pp.
19
29
.
4.
Simon
,
P.
,
Gogotsi
,
Y.
, and
Dunn
,
B. J. S.
,
2014
, “
Where Do Batteries End and Supercapacitors Begin?
,”
Science
,
343
(
6176
), pp.
1210
1211
.
5.
Imran
,
M.
,
Afzal
,
A. M.
,
Iqbal
,
M. W.
,
Hegazy
,
H.
,
Iqbal
,
M. Z.
,
Mumtaz
,
S.
, and
Qureshi
,
R.
,
2023
, “
Manganese (Sulfide/Oxide) Based Electrode Materials Advancement in Supercapattery Devices
,”
Mater. Sci. Semicond. Process.
,
158
, p.
107366
.
6.
Vidyadharan
,
B.
,
Abd Aziz
,
R.
,
Misnon
,
I. I.
,
Kumar
,
G. M. A.
,
Ismail
,
J.
,
Yusoff
,
M. M.
, and
Jose
,
R.
,
2014
, “
High Energy and Power Density Asymmetric Supercapacitors Using Electrospun Cobalt Oxide Nanowire Anode
,”
J. Power Sources
,
270
, pp.
526
535
.
7.
Mustafa
,
M. N.
,
Abdah
,
M. A. A. M.
,
Numan
,
A.
,
Sulaiman
,
Y.
,
Walvekar
,
R.
, and
Khalid
,
M. J. E. A.
,
2023
, “
Specific Capacity Optimization of Nickel Cobalt Phosphate Using Response Surface Methodology for Enhanced Electrochromic Energy Storage Performance
,”
Electrochim. Acta
,
441
, p.
141765
.
8.
Thounthong
,
P.
,
Rael
,
S.
, and
Davat
,
B. J. J. o. p. s.
,
2009
, “
Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Source for Vehicle Applications
,”
J. Power Sources
,
193
(
1
), pp.
376
385
.
9.
Dubal
,
D. P.
,
Ayyad
,
O.
,
Ruiz
,
V.
, and
Gomez-Romero
,
P. J. C. S. R.
,
2015
, “
Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries
,”
Chem. Soc. Rev.
,
44
(
7
), pp.
1777
1790
.
10.
Hegazy
,
H.
,
Afzal
,
A. M.
,
Shaaban
,
E.
,
Iqbal
,
M. W.
,
Muhammad
,
S.
, and
Alahmari
,
A.
,
2023
, “
Synthesis of MXene and Design the High-Performance Energy Harvesting Devices With Multifunctional Applications
,”
Ceram. Int.
,
49
(
2
), pp.
1710
1719
.
11.
Oh
,
M. H.
,
Yu
,
T.
,
Yu
,
S.-H.
,
Lim
,
B.
,
Ko
,
K.-T.
,
Willinger
,
M.-G.
,
Seo
,
D.-H.
,
Kim
,
B. H.
,
Cho
,
M. G.
, and
Park
,
J.-H. J. S.
,
2013
, “
Galvanic Replacement Reactions in Metal Oxide Nanocrystals
,”
Science
,
340
(
6135
), pp.
964
968
.
12.
Numan
,
A.
,
Bibi
,
F.
,
Omar
,
F. S.
,
Ullah
,
S.
,
Al-Hartomy
,
O. A.
, and
Khalid
,
M. J. J. o. A.
,
2022
, “
Compounds, Harvesting Enhanced Electrochemical Performance of Mixed Structured Nickel Cobalt Phosphate for Energy Storage Application
,”
J. Alloys Compd.
,
927
, p.
167031
.
13.
An
,
K. H.
,
Jeon
,
K. K.
,
Heo
,
J. K.
,
Lim
,
S. C.
,
Bae
,
D. J.
, and
Lee
,
Y. H. J. J. o. t. E. S.
,
2002
, “
High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole
,”
J. Electrochem. Soc.
,
149
(
8
), p.
A1058
.
14.
Anothumakkool
,
B.
,
Soni
,
R.
,
Bhange
,
S. N.
, and
Kurungot
,
S.
,
2015
, “
Novel Scalable Synthesis of Highly Conducting and Robust PEDOT Paper for a High Performance Flexible Solid Supercapacitor
,”
Energy Environ. Sci.
,
8
(
4
), pp.
1339
1347
.
15.
Dubal
,
D. P.
,
Lee
,
S. H.
,
Kim
,
J. G.
,
Kim
,
W. B.
, and
Lokhande
,
C. D. J. J. o. M. C.
,
2012
, “
Porous Polypyrrole Clusters Prepared by Electropolymerization for a High Performance Supercapacitor
,”
J. Mater. Chem.
,
22
(
7
), pp.
3044
3052
.
16.
Eftekhari
,
A.
,
2017
, “
Tungsten Dichalcogenides (WS2, WSe2, and WTe2): Materials Chemistry and Applications
,”
J. Mater. Chem. A
,
5
(
35
), pp.
18299
18325
.
17.
Wang
,
L.
,
Ma
,
Y.
,
Yang
,
M.
, and
Qi
,
Y. J. A. S. S.
,
2017
, “
Titanium Plate Supported MoS2 Nanosheet Arrays for Supercapacitor Application
,”
Appl. Surf. Sci.
,
396
, pp.
1466
1471
.
18.
Zhou
,
C.
,
Wang
,
J.
,
Yan
,
X.
,
Yuan
,
X.
,
Wang
,
D.
,
Zhu
,
Y.
, and
Cheng
,
X. J. C. I.
,
2019
, “
Vertical MoS2 Nanosheets Arrays on Carbon Cloth as Binder-Free and Flexible Electrode for High-Performance all-Solid-State Symmetric Supercapacitor
,”
Ceram. Int.
,
45
(
17
), pp.
21534
21543
.
19.
Tan
,
Y. B.
, and
Lee
,
J. M.
,
2013
, “
Graphene for Supercapacitor Applications
,”
J. Mater. Chem. A
,
1
(
47
), pp.
14814
14843
.
20.
Yaglikci
,
S.
,
Gokce
,
Y.
,
Yagmur
,
E.
, and
Aktas
,
Z.
,
2020
, “
The Performance of Sulphur Doped Activated Carbon Supercapacitors Prepared From Waste Tea
,”
Environ. Technol.
,
41
(
1
), pp.
36
48
.
21.
Zhu
,
Y.
,
Murali
,
S.
,
Stoller
,
M. D.
,
Ganesh
,
K.
,
Cai
,
W.
,
Ferreira
,
P. J.
,
Pirkle
,
A.
,
Wallace
,
R. M.
,
Cychosz
,
K. A.
, and
Thommes
,
M.
,
2011
, “
Carbon-Based Supercapacitors Produced by Activation of Graphene
,”
Science
,
332
(
6037
), pp.
1537
1541
.
22.
Hassan
,
H. u.
,
Iqbal
,
M. W.
,
Afzal
,
A. M.
,
abbas
,
T.
,
Zaka
,
A.
,
Yasmeen
,
A.
,
Noor
,
N. A.
,
Aftab
,
S.
, and
Ullah
,
H.
, “
Highly Stable Binary Composite of Nickel Silver Sulfide (NiAg2S) Synthesized Using the Hydrothermal Approach for High-Performance Supercapattery Applications
,”
Int. J. Energy Res.
,
46
(
8
), pp.
11346
11358
.
23.
Numan
,
A.
,
Iqbal
,
J.
,
Jagadish
,
P.
,
Krishnan
,
S. G.
,
Khalid
,
M.
,
Pannipara
,
M.
, and
Wageh
,
S.
,
2022
, “
Tailoring Crystallinity of 2D Cobalt Phosphate to Introduce Pseudocapacitive Behavior
,”
J. Energy Storage
,
54
, p.
105371
.
24.
Iqbal
,
M. Z.
,
Khan
,
J.
,
Siddique
,
S.
,
Afzal
,
A. M.
, and
Aftab
,
S.
,
2021
, “
Optimizing Electrochemical Performance of Sonochemically and Hydrothermally Synthesized Cobalt Phosphate for Supercapattery Devices
,”
Int. J. Hydrogen Energy
,
46
(
29
), pp.
15807
15819
.
25.
Imran
,
M.
,
Iqbal
,
M. W.
,
Afzal
,
A. M.
,
Faisal
,
M. M.
, and
Alzahrani
,
H. A.
,
2023
, “
Synergetic Electrochemical Performance of Ni x–Mn x Sulfide-Based Binary Electrode Material for Supercapattery Devices
,”
J. Appl. Electrochem.
, pp.
1
12
.
26.
Pujari
,
R.
,
Lokhande
,
A.
,
Yadav
,
A.
,
Kim
,
J.
, and
Lokhande
,
C. J. M.
,
2016
, “
Design, Synthesis of MnS Microfibers for High Performance Flexible Supercapacitors
,”
Mater. Des.
,
108
, pp.
510
517
.
27.
Guo
,
J.
,
Zhang
,
X.
,
Sun
,
Y.
,
Zhang
,
X.
,
Tang
,
L.
, and
Zhang
,
X.
,
2017
, “
Double-Shell CuS Nanocages as Advanced Supercapacitor Electrode Materials
,”
J. Power Sources
,
355
, pp.
31
35
.
28.
Hussain
,
I.
,
Mohapatra
,
D.
,
Dhakal
,
G.
,
Lamiel
,
C.
,
Sayed
,
M. S.
,
Sahoo
,
S.
,
Mohamed
,
S. G.
,
Kim
,
J. S.
,
Lee
,
Y. R.
, and
Shim
,
J. J.
,
2021
, “
Uniform Growth of ZnS Nanoflakes for High-Performance Supercapacitor Applications
,”
J. Energy Storage
,
36
, p.
102408
.
29.
Ahmed
,
I.
,
Wageh
,
S.
,
Rehman
,
W.
,
Iqbal
,
J.
,
Mir
,
S.
,
Al-Ghamdi
,
A.
,
Khalid
,
M.
, and
Numan
,
A. J. P.
,
2022
, “
Evaluation of the Synergistic Effect of Graphene Oxide Sheets and Co3O4 Wrapped With Vertically Aligned Arrays of Poly (Aniline-Co-Melamine) Nanofibers for Energy Storage Applications
,”
Polymers
,
14
(
13
), p.
2685
.
30.
Ouyang
,
Y.
,
Xia
,
X.
,
Ye
,
H.
,
Wang
,
L.
,
Jiao
,
X.
,
Lei
,
W.
, and
Hao
,
Q.
,
2018
, “
Three-Dimensional Hierarchical Structure ZnO@ C@ NiO on Carbon Cloth for Asymmetric Supercapacitor With Enhanced Cycle Stability
,”
ACS Appl. Mater. Interfaces
,
10
(
4
), pp.
3549
3561
.
31.
Zhao
,
B.
,
Wang
,
T.
,
Jiang
,
L.
,
Zhang
,
K.
,
Yuen
,
M. M.
,
Xu
,
J.-B.
,
Fu
,
X.-Z.
,
Sun
,
R.
, and
Wong
,
C.-P.
,
2016
, “
NiO Mesoporous Nanowalls Grown on RGO Coated Nickel Foam as High Performance Electrodes for Supercapacitors and Biosensors
,”
Electrochim. Acta
,
192
, pp.
205
215
.
32.
Chandrasekaran
,
S.
,
Yao
,
L.
,
Deng
,
L.
,
Bowen
,
C.
,
Zhang
,
Y.
,
Chen
,
S.
,
Lin
,
Z.
,
Peng
,
F.
, and
Zhang
,
P.
,
2019
, “
Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond
,”
Chem. Soc. Rev.
,
48
(
15
), pp.
4178
4280
.
33.
Rui
,
X.
,
Tan
,
H.
, and
Yan
,
Q. J. N.
,
2014
, “
Nanostructured Metal Sulfides for Energy Storage
,”
Nanoscale
,
6
(
17
), pp.
9889
9924
.
34.
Borenstein
,
A.
,
Hanna
,
O.
,
Attias
,
R.
,
Luski
,
S.
,
Brousse
,
T.
, and
Aurbach
,
D.
,
2017
, “
Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review
,”
J. Mater. Chem. A
,
5
(
25
), pp.
12653
12672
.
35.
Shao
,
Y.
,
El-Kady
,
M. F.
,
Sun
,
J.
,
Li
,
Y.
,
Zhang
,
Q.
,
Zhu
,
M.
,
Wang
,
H.
,
Dunn
,
B.
, and
Kaner
,
R. B.
,
2018
, “
Design and Mechanisms of Asymmetric Supercapacitors
,”
Chem. Rev.
,
118
(
18
), pp.
9233
9280
.
36.
Iro
,
Z. S.
,
Subramani
,
C.
, and
Dash
,
S. S.
,
2016
, “
A Brief Review on Electrode Materials for Supercapacitor
,”
Int. J. Electrochem. Sci.
,
11
(
2
), pp.
10628
10643
.
37.
Su
,
D.
,
McDonagh
,
A.
,
Qiao
,
S. Z.
, and
Wang
,
G.
,
2017
, “
High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage
,”
Adv. Mater.
,
29
(
1
), p.
1604007
.
38.
Li
,
Z.
,
Mi
,
Y.
,
Liu
,
X.
,
Liu
,
S.
,
Yang
,
S.
, and
Wang
,
J.
,
2011
, “
Flexible Graphene/MnO 2 Composite Papers for Supercapacitor Electrodes
,”
J. Mater. Chem.
,
21
(
38
), pp.
14706
14711
.
39.
Li
,
L.
,
Hu
,
Z. A.
,
An
,
N.
,
Yang
,
Y. Y.
,
Li
,
Z. M.
, and
Wu
,
H. Y.
,
2014
, “
Facile Synthesis of MnO2/CNTs Composite for Supercapacitor Electrodes With Long Cycle Stability
,”
J. Phys. Chem. C
,
118
(
40
), pp.
22865
22872
.
40.
Seo
,
D. H.
,
Yick
,
S.
,
Han
,
Z. J.
,
Fang
,
J. H.
, and
Ostrikov
,
K.
,
2014
, “
Synergistic Fusion of Vertical Graphene Nanosheets and Carbon Nanotubes for High-Performance Supercapacitor Electrodes
,”
ChemSusChem
,
7
(
8
), pp.
2317
2324
.
41.
Wang
,
H.
,
Peng
,
C.
,
Peng
,
F.
,
Yu
,
H.
, and
Yang
,
J.
,
2011
, “
Facile Synthesis of MnO2/CNT Nanocomposite and its Electrochemical Performance for Supercapacitors
,”
Mater. Sci. Eng. B
,
176
(
14
), pp.
1073
1078
.
42.
You
,
B.
,
Li
,
N.
,
Zhu
,
H.
,
Zhu
,
X.
, and
Yang
,
J.
,
2013
, “
Graphene Oxide-Dispersed Pristine CNTs Support for MnO2 Nanorods as High Performance Supercapacitor Electrodes
,”
ChemSusChem
,
6
(
3
), pp.
474
480
.
43.
Yin
,
B.-S.
,
Wang
,
Z.-B.
,
Zhang
,
S.-W.
,
Liu
,
C.
,
Ren
,
Q.-Q.
, and
Ke
,
K.
,
2016
, “
In Situ Growth of Free-Standing all Metal Oxide Asymmetric Supercapacitor
,”
ACS Appl. Mater. Interfaces
,
8
(
39
), pp.
26019
26029
.
44.
Sun
,
J.
,
Huang
,
Y.
,
Sea
,
Y. N. S.
,
Xue
,
Q.
,
Wang
,
Z.
,
Zhu
,
M.
,
Li
,
H.
,
Tao
,
X.
,
Zhi
,
C.
, and
Hu
,
H.
,
2017
, “
Recent Progress of Fiber-Shaped Asymmetric Supercapacitors
,”
Mater. Today Energy
,
5
, pp.
1
14
.
45.
Zhi
,
M.
,
Xiang
,
C.
,
Li
,
J.
,
Li
,
M.
, and
Wu
,
N.
,
2013
, “
Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review
,”
Nanoscale
,
5
(
1
), pp.
72
88
.
46.
Mi
,
L.
,
Chen
,
Y.
,
Zheng
,
Z.
,
Hou
,
H.
,
Chen
,
W.
, and
Cui
,
S.
,
2014
, “
Beneficial Metal Ion Insertion Into Dandelion-Like MnS With Enhanced Catalytic Performance and Genetic Morphology
,”
RSC Adv.
,
4
(
37
), pp.
19257
19265
.
47.
Abdi
,
M.
,
Chou
,
J.-P.
,
Gali
,
A.
, and
Plenio
,
M. B.
,
2018
, “
Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis
,”
ACS Photonics
,
5
(
5
), pp.
1967
1976
.
48.
Fathi
,
Z.
,
Nejad
,
R.-A. K.
,
Mahmoodzadeh
,
H.
, and
Satari
,
T. N.
,
2017
, “
Investigating of a Wide Range of Concentrations of Multi-Walled Carbon Nanotubes on Germination and Growth of Castor Seeds (Ricinus Communis L.)
,”
J. Plant Prot. Res.
,
57
(
3
), pp.
228
236
.
49.
Kim
,
B.-J.
,
Kim
,
J.-P.
, and
Park
,
J. S.
,
2014
, “
Effects of Al Interlayer Coating and Thermal Treatment on Electron Emission Characteristics of Carbon Nanotubes Deposited by Electrophoretic Method
,”
Nanoscale Res. Lett.
,
9
(
1
), pp.
1
6
.
50.
Tiwari
,
P.
,
Malik
,
G.
, and
Chandra
,
R. J.
,
2018
, “
Phase-Dependent Structural and Electrochemical Properties of Single Crystalline MnS Thin Films Deposited by DC Reactive Sputtering
,”
J. Appl. Phys.
,
124
(
19
), p.
195106
.
51.
Bui
,
P.
,
Takagaki
,
A.
,
Kikuchi
,
R.
, and
Oyama
,
S. T.
,
2016
, “
Kinetic and Infrared Spectroscopy Study of Hydrodeoxygenation of 2-Methyltetrahydrofuran on a Nickel Phosphide Catalyst at Atmospheric Pressure
,”
ACS Catal.
,
6
(
11
), pp.
7701
7709
.
52.
Iqbal
,
M. Z.
,
Faisal
,
M. M.
,
Afzal
,
A. M.
,
Haider
,
S. S.
,
Ali
,
S. R.
,
Kamran
,
M. A.
,
Alharbi
,
T.
, and
Hussain
,
T.
,
2020
, “
Ultraviolet-Light-Driven Current Modulation of Au/WS2/Gr Schottky Barrier
,”
Physica E Low Dimens. Syst. Nanostruct.
,
117
, p.
113837
.
53.
Afzal
,
A. M.
,
Ali
,
M.
,
Iqbal
,
M. W.
,
Imran
,
M.
,
Ur Rehman
,
A.
,
Mumtaz
,
S.
,
Kim
,
J. s.
,
Choi
,
E. H.
, and
Mohammed Alanazi
,
Y.
,
2022
, “
Enhanced the Electrochemical Performance and Stability of Supercapattery Device With Carbon Nanotube/Cobalt-Manganese Sulfide-Based Composite Electrode Material
,”
Int. J. Energy Res.
,
46
(
15
), pp.
24355
24367
.
54.
Ali
,
M.
,
Afzal
,
A. M.
,
Iqbal
,
M. W.
,
Mumtaz
,
S.
,
Imran
,
M.
,
Ashraf
,
F.
,
Ur Rehman
,
A.
, and
Muhammad
,
F.
,
2022
, “
2D-TMDs Based Electrode Material for Supercapacitor Applications
,”
Int. J. Energy Res.
,
46
(
35
), pp.
22336
22364
.
55.
Iqbal
,
M. Z.
,
Faisal
,
M. M.
,
Ali
,
S. R.
,
Afzal
,
A. M.
,
Karim
,
M. R. A.
,
Kamran
,
M. A.
, and
Alharbi
,
T.
,
2020
, “
Strontium Phosphide-Polyaniline Composites for High Performance Supercapattery Devices
,”
Ceram. Int.
,
46
(
8
), pp.
10203
10214
.
56.
Gu
,
C.
,
Ge
,
X.
,
Wang
,
X.
, and
Tu
,
J.
,
2015
, “
Cation–Anion Double Hydrolysis Derived Layered Single Metal Hydroxide Superstructures for Boosted Supercapacitive Energy Storage
,”
J. Mater. Chem. A
,
3
(
27
), pp.
14228
14238
.
57.
Jahromi
,
S. P.
,
Pandikumar
,
A.
,
Goh
,
B. T.
,
Lim
,
Y. S.
,
Basirun
,
W. J.
,
Lim
,
H. N.
, and
Huang
,
N. M.
,
2015
, “
Influence of Particle Size on Performance of a Nickel Oxide Nanoparticle-Based Supercapacitor
,”
RSC Adv.
,
5
(
18
), pp.
14010
14019
.
58.
Iqbal
,
M. Z.
,
Faisal
,
M. M.
,
Ali
,
S. R.
,
Farid
,
S.
, and
Afzal
,
A. M.
,
2020
, “
Co-MOF/polyaniline-Based Electrode Material for High Performance Supercapattery Devices
,”
Electrochim. Acta
,
346
, p.
136039
.
59.
Iqbal
,
M. Z.
,
Faisal
,
M. M.
,
Sulman
,
M.
,
Ali
,
S. R.
,
Afzal
,
A. M.
,
Kamran
,
M. A.
, and
Alharbi
,
T.
,
2020
, “
Capacitive and Diffusive Contribution in Strontium Phosphide-Polyaniline Based Supercapattery
,”
J. Energy Storage
,
29
, p.
101324
.
60.
Lee
,
C. C.
,
Omar
,
F. S.
,
Numan
,
A.
,
Duraisamy
,
N.
,
Ramesh
,
K.
, and
Ramesh
,
S.
,
2017
, “
An Enhanced Performance of Hybrid Supercapacitor Based on Polyaniline-Manganese Phosphate Binary Composite
,”
J. Solid State Electrochem.
,
21
(
11
), pp.
3205
3213
.
61.
Numan
,
A.
,
Khalid
,
M.
,
Ramesh
,
S.
,
Ramesh
,
K.
,
Shamsudin
,
E.
,
Zhan
,
Y.
, and
Jagadesh
,
P.
,
2020
, “
Facile Sonochemical Synthesis of 2D Porous Co3O4 Nanoflake for Supercapattery
,”
J. Alloys Compd.
,
819
, p.
153019
.
62.
Shahabuddin
,
S.
,
Numan
,
A.
,
Shahid
,
M. M.
,
Khanam
,
R.
,
Saidur
,
R.
,
Pandey
,
A.
, and
Ramesh
,
S.
,
2019
, “
Polyaniline-SrTiO3 Nanocube Based Binary Nanocomposite as Highly Stable Electrode Material for High Performance Supercapaterry
,”
Ceram. Int.
,
45
(
9
), pp.
11428
11437
.
63.
Iqbal
,
J.
,
Numan
,
A.
,
Jafer
,
R.
,
Bashir
,
S.
,
Jilani
,
A.
,
Mohammad
,
S.
,
Khalid
,
M.
,
Ramesh
,
K.
, and
Ramesh
,
S.
,
2020
, “
Ternary Nanocomposite of Cobalt Oxide Nanograins and Silver Nanoparticles Grown on Reduced Graphene Oxide Conducting Platform for High-Performance Supercapattery Electrode Material
,”
J. Alloys Compd.
,
821
, p.
153452
.
64.
Manikandan
,
R.
,
Raj
,
C. J.
,
Yu
,
K. H.
, and
Kim
,
B. C.
,
2019
, “
Self-Coupled Nickel Sulfide@ Nickel Vanadium Sulfide Nanostructure as a Novel High Capacity Electrode Material for Supercapattery
,”
Appl. Surf. Sci.
,
497
(
25
), p.
143778
.
65.
Ma
,
L.
,
Chen
,
T.
,
Li
,
S.
,
Gui
,
P.
, and
Fang
,
G.
,
2019
, “
A 3D Self-Supported Coralline-Like CuCo2S4@ NiCo2S4 Core–Shell Nanostructure Composite for High-Performance Solid-State Asymmetrical Supercapacitors
,”
Nanotechnology
,
30
, p.
255603
.
66.
Kim
,
B. C.
,
Manikandan
,
R.
,
Yu
,
K. H.
,
Park
,
M.-S.
,
Kim
,
D.-W.
,
Park
,
S. Y.
, and
Raj
,
C. J.
,
2019
, “
Efficient Supercapattery Behavior of Mesoporous Hydrous and Anhydrous Cobalt Molybdate Nanostructures
,”
J. Alloys Compd.
,
789
, pp.
256
265
.
67.
Zhang
,
Y.
,
Wang
,
C.
,
Jiang
,
H.
,
Wang
,
Q.
,
Zheng
,
J.
, and
Meng
,
C.
,
2019
, “
Cobalt-Nickel Silicate Hydroxide on Amorphous Carbon Derived From Bamboo Leaves for Hybrid Supercapacitors
,”
Chem. Eng. J.
,
375
, p.
121938
.
You do not currently have access to this content.