In this paper, a detailed model of a solid oxide fuel cell (SOFC) tube is presented. The SOFC tube is discretized along its longitudinal axis. Detailed models of the kinetics of the shift and reforming reactions are introduced in order to evaluate their rates along the SOFC axis. Energy, moles, and mass balances are performed for each slice of the components under investigation, allowing the calculation of temperature profiles. Friction factors and heat-exchange coefficients are calculated by means of experimental correlations. As for the SOFC overvoltages, the activation overvoltage is calculated using the Butler–Volmer equation and semiempirical correlations for the exchange current density, Ohmic losses are evaluated introducing an appropriate electrical scheme and material resistivities, and concentration overvoltage is calculated by means of both binary and Knudsen diffusion coefficients. On the basis of this model, a case study is presented and discussed, in which temperatures, pressures, chemical compositions, and electrical parameters are evaluated for each slice of the SOFC tube under investigation. Finally, a sensitivity analysis is performed, in order to investigate the influence of the design parameters on the performance of the system.

1.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells
,
Elsevier
,
Amsterdam
.
2.
Larminie
,
J.
, and
Dicks
,
A.
, 2004,
Fuel Cell System Explained
,
Wiley
,
New York
.
3.
2002,
Fuel Cell Handbook
, 6th ed.,
U. S. Department of Energy
,
Washington
.
4.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Simulation and Exergy Analysis of a SOFC-Gas Turbine System
,”
Energy
0360-5442,
31
(
15
), pp.
3278
3299
.
5.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Design and Partial Load Exergy Analysis of a Hybrid Sofc-gt Power Plant
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
225
244
.
6.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
, 2006, “
Single-Level Optimization of a Hybrid SOFC-GT Power Plant
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1169
1185
.
7.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Palombo
,
A.
,
Vanoli
,
L.
, and
Vanoli
,
R.
, 2004, “
Modelling, Simulation and Exergy Analysis of a Hybrid SOFC-Gas Turbine System
,” Third International Symposium Energy and Environment 2004,
Sorrento
, Sept. 30–Oct. 2.
8.
Costamagna
,
P.
,
Magistr
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
9.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2003, “
Multi-Level Modelling of SOFC-Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
889
900
.
10.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of a Simple Solid-Oxide Fuel Cell Power System
,”
J. Power Sources
0378-7753,
103
, pp.
188
200
.
11.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
226
.
12.
Stiller
,
C.
,
Thorud
,
B.
,
Seljebo
,
S.
,
Mathisen
,
O.
,
Karoliussen
,
H.
, and
Bolland
,
O.
, 2005, “
Finite Volume Modelling and Hybrid-Cycle Performance of Planar and Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
141
, pp.
227
240
.
13.
Chan
,
S. H.
,
Kior
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
14.
Nisancioglu
,
K.
, 1989, “
Natural Gas Fuelled Solid Oxide Fuel Cells and Systems, Ohmic Losses
,” Workshop on mathematical modelling,
Charmey, Switzerland
, Jul.
2–6
.
15.
Reid
,
R. C.
,
Prausnitz
,
J.
, and
Shenwood
,
T. K.
, 1977,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
16.
1999,
Chemical Properties Handbook
,
McGraw-Hill
,
New York
, pp.
531
556
.
17.
Free Molecule (Knudsen) in Porous Media (www.fuelcellknowledge.orgwww.fuelcellknowledge.org).
18.
Diffusion Versus Mass Transfer by Bulk Motion, Fick’s Law and Mass Transfer Rate Equation, CEIC0010.
19.
Todd
,
B.
, and
Young
,
J. B.
, 2002, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
110
, pp.
186
200
.
20.
Gallucci
,
F.
,
Paturzo
,
L.
, and
Basile
,
A.
, 2004, “
A Simulation Study of the Steam Reforming of Methane in a Dense Tubular Membrane Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
611
617
.
21.
Xu
,
J.
, and
Froment
,
G. F.
, 1989, “
Methane-Steam Reforming: Methanation and Water-Gas Shift: I. Intrinsic Kinetics
,” AIChE J.
You do not currently have access to this content.